Show simple item record

dc.contributor.authorYuan, X
dc.contributor.authorDu, Y
dc.contributor.authorFei, G
dc.contributor.authorYang, R
dc.contributor.authorWang, C
dc.contributor.authorXu, Q
dc.contributor.authorLi, C
dc.date.accessioned2023-04-24T14:51:23Z
dc.date.issued2023-04-21
dc.date.updated2023-04-24T12:43:54Z
dc.description.abstractThe superior capillary wicking capability of hierarchical surfaces determined by the capillary pressure and viscous resistance plays a critical role in developing the high-efficient thermal management devices. In this study, a novel chemical oxide method for fabricating the in situ micro/nanocrystal structures on the copper substrates with prominently improved capillary wicking capability is proposed. Single-scaled and hierarchical structures can be fabricated, and the capillary wicking capability of the hierarchical structures exhibits the much higher wicking coefficient than that of the single-scaled structures. The wicking coefficient on the nanosheet and micro-flowers hierarchical surface was measured as 3.77 mm/s0.5, which indicates a maximum improvement of 146.4% compared to single-scaled structures. This hierarchical structure can provide two-tier pores for strengthening the capillary pressure driven by the nanoscale pores and reducing the viscous resistance driven by the micropores. It is worth noting that the ultrafast wicking on the hierarchical surface is useful in creating extremely effective thermal management systems and advanced heat exchangers.en_GB
dc.description.sponsorshipNational Key Research and Development Program of Chinaen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.identifier.citationVol. 27(5), article 31en_GB
dc.identifier.doihttps://doi.org/10.1007/s10404-023-02641-8
dc.identifier.grantnumber2022YFE0198800en_GB
dc.identifier.grantnumber52076139en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133001
dc.identifierORCID: 0000-0001-7393-6406 (Du, Yanping)
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.rights.embargoreasonUnder embargo until 21 April 2024 in compliance with publisher policyen_GB
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023en_GB
dc.subjectCapillary wickingen_GB
dc.subjectIn-situ micro/nanocrystalsen_GB
dc.subjectHierarchical structureen_GB
dc.subjectLiquid circulationen_GB
dc.subjectSurface morphologyen_GB
dc.titleExperimental study on developing in-situ hierarchical micro/nanocrystals for improved capillary wickingen_GB
dc.typeArticleen_GB
dc.date.available2023-04-24T14:51:23Z
dc.identifier.issn1613-4982
exeter.article-number31
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer via the DOI in this recorden_GB
dc.descriptionData availability: Data will be available on request.en_GB
dc.identifier.eissn1613-4990
dc.identifier.journalMicrofluidics and Nanofluidicsen_GB
dc.relation.ispartofMicrofluidics and Nanofluidics, 27(5)
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2023-02-22
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-04-21
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-04-24T14:33:24Z
refterms.versionFCDVoR
refterms.dateFOA2024-04-20T23:00:00Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-04-21


Files in this item

This item appears in the following Collection(s)

Show simple item record