Show simple item record

dc.contributor.authorJafari, SM
dc.contributor.authorNikoo, MR
dc.contributor.authorBozorg-Haddad, O
dc.contributor.authorAlamdari, N
dc.contributor.authorFarmani, R
dc.contributor.authorGandomi, A
dc.date.accessioned2023-04-27T11:51:21Z
dc.date.issued2023-05-19
dc.date.updated2023-04-27T10:16:30Z
dc.description.abstractWater distribution networks (WDN) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To solve these challenges, this study aimed to prepare and implement the optimal instruction for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction, increases the network’s physical and hydraulic performance by 56% and 35%, respectively and decreases the annual deficit of nodes' demand between 69% and 93%. Also, the proposed methodology reduced the optimization run time by about 99%.en_GB
dc.description.sponsorshipRoyal Academy of Engineering (RAE)en_GB
dc.identifier.citationPublished online 19 May 2023en_GB
dc.identifier.doi10.1080/1573062X.2023.2209063
dc.identifier.grantnumberIF\192057en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133036
dc.identifierORCID: 0000-0001-8148-0488 (Farmani, Raziyeh)
dc.language.isoenen_GB
dc.publisherTaylor and Francisen_GB
dc.rights.embargoreasonUnder embargo until 19 May 2024 in compliance with publisher policy en_GB
dc.rights© 2023 Informa UK Limited, trading as Taylor & Francis Group. This version is made available under the CC-BY-NC 4.0 license: https://creativecommons.org/licenses/by-nc/4.0/  en_GB
dc.subjectWater Distribution Networken_GB
dc.subjectMulti-objective Optimisationen_GB
dc.subjectPipes replacementen_GB
dc.subjectRobust modelen_GB
dc.subjectMachine learningen_GB
dc.subjectDecision-makingen_GB
dc.titleA robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approachesen_GB
dc.typeArticleen_GB
dc.date.available2023-04-27T11:51:21Z
dc.identifier.issn1744-9006
dc.descriptionThis is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recorden_GB
dc.identifier.journalUrban Water Journalen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/  en_GB
dcterms.dateAccepted2023-04-21
dcterms.dateSubmitted2022-09-25
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-04-21
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-04-27T10:16:35Z
refterms.versionFCDAM
refterms.dateFOA2024-05-18T23:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 Informa UK Limited, trading as Taylor & Francis Group. This version is made available under the CC-BY-NC 4.0 license: https://creativecommons.org/licenses/by-nc/4.0/  
Except where otherwise noted, this item's licence is described as © 2023 Informa UK Limited, trading as Taylor & Francis Group. This version is made available under the CC-BY-NC 4.0 license: https://creativecommons.org/licenses/by-nc/4.0/