Show simple item record

dc.contributor.authorDing, H
dc.contributor.authorZhang, Y
dc.contributor.authorDong, Y
dc.contributor.authorWen, C
dc.contributor.authorYang, Y
dc.date.accessioned2023-05-09T09:29:47Z
dc.date.issued2023-03-28
dc.date.updated2023-05-09T09:01:46Z
dc.description.abstractCarbon capture, utilisation and storage (CCUS) is of unique significance for building a green and resilient energy system, and it is also a key solution to tackle the climate challenge. The concept of supersonic decarburization, a joint product of non-equilibrium condensation and swirling separation, can contribute to CCUS technology in a clean way. In this paper, a numerical model is established and validated to investigate the complex physical phenomena of supersonic decarbonization in a high-pressure environment based on the real gas equation of state. The model is compatible with the pure CO2 model and CH4-CO2 model. Through the simulation of the supersonic nozzle and supersonic separator, the condensation and separation performance of supersonic decarbonization technology was evaluated. For the condensation performance of carbon dioxide, the results show that higher pressure makes it much easier to achieve the condensation process. When the pressure is supercritical, the decrease of inlet temperature or the increase of inlet mole fraction of CO2 leads to a higher liquid fraction. For separation performance, when the mass concentration of inlet heterogeneous droplets increases from 0.1 kg/m3 to 7.5 kg/m3, the carbon separation amount increases from 3.33 ton/h to 4.43 ton/h, while the exergy loss of condensed CO2 drops from 436.57 kJ/kg to 329.56 kJ/kg. It demonstrates that the decarburization process is easier, and exergy required for condensation decreases when the concentration of the foreign core is larger. This new concept is beneficial to CCUS technology and can be applied to carbon capture in offshore natural gas processing.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.format.extent120975-
dc.identifier.citationVol. 339, article 120975en_GB
dc.identifier.doihttps://doi.org/10.1016/j.apenergy.2023.120975
dc.identifier.grantnumber52276159en_GB
dc.identifier.grantnumber51876143en_GB
dc.identifier.grantnumber62073135en_GB
dc.identifier.grantnumberEP/X027147/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133105
dc.identifierORCID: 0000-0002-4445-1589 (Wen, Chuang)
dc.identifierScopusID: 36454182800 (Wen, Chuang)
dc.identifierResearcherID: I-5663-2016 (Wen, Chuang)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectCarbon captureen_GB
dc.subjectCO2 separationen_GB
dc.subjectCO2 captureen_GB
dc.subjectSupersonic separationen_GB
dc.subjectCCSen_GB
dc.subjectCCUSen_GB
dc.titleHigh-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technologyen_GB
dc.typeArticleen_GB
dc.date.available2023-05-09T09:29:47Z
dc.identifier.issn0306-2619
exeter.article-number120975
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability: The research data supporting this publication are provided within this paper.en_GB
dc.identifier.eissn1872-9118
dc.identifier.journalApplied Energyen_GB
dc.relation.ispartofApplied Energy, 339
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-03-10
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-03-28
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-05-09T09:27:13Z
refterms.versionFCDVoR
refterms.dateFOA2023-05-09T09:29:52Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).