Show simple item record

dc.contributor.authorAlyami, L
dc.contributor.authorPanda, DK
dc.contributor.authorDas, S
dc.date.accessioned2023-05-17T15:25:00Z
dc.date.issued2023-05-13
dc.date.updated2023-05-17T15:11:52Z
dc.description.abstractThe epistemic uncertainty in coronavirus disease (COVID-19) model-based predictions using complex noisy data greatly affects the accuracy of pandemic trend and state estimations. Quantifying the uncertainty of COVID-19 trends caused by different unobserved hidden variables is needed to evaluate the accuracy of the predictions for complex compartmental epidemiological models. A new approach for estimating the measurement noise covariance from real COVID-19 pandemic data has been presented based on the marginal likelihood (Bayesian evidence) for Bayesian model selection of the stochastic part of the Extended Kalman filter (EKF), with a sixth-order nonlinear epidemic model, known as the SEIQRD (Susceptible–Exposed–Infected–Quarantined–Recovered–Dead) compartmental model. This study presents a method for testing the noise covariance in cases of dependence or independence between the infected and death errors, to better understand their impact on the predictive accuracy and reliability of EKF statistical models. The proposed approach is able to reduce the error in the quantity of interest compared to the arbitrarily chosen values in the EKF estimation.en_GB
dc.description.sponsorshipEuropean Regional Development Fund (ERDF)en_GB
dc.description.sponsorshipNajran Universityen_GB
dc.description.sponsorshipSaudi Arabia Cultural Bureauen_GB
dc.format.extent4734-4734
dc.identifier.citationVol. 23, No.10, article 4734en_GB
dc.identifier.doihttps://doi.org/10.3390/s23104734
dc.identifier.grantnumberOC05R18P 0782en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133166
dc.identifierORCID: 0000-0002-8394-5303 (Das, Saptarshi)
dc.identifierScopusID: 57193720393 (Das, Saptarshi)
dc.identifierResearcherID: D-5518-2012 (Das, Saptarshi)
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_GB
dc.subjectBayesian model selectionen_GB
dc.subjectnested samplingen_GB
dc.subjectskew-normal distributionsen_GB
dc.subjectBayesian evidenceen_GB
dc.subjectextended Kalman filter (EKF)en_GB
dc.titleBayesian noise modelling for state estimation of the spread of COVID-19 in Saudi Arabia with extended Kalman filtersen_GB
dc.typeArticleen_GB
dc.date.available2023-05-17T15:25:00Z
dc.descriptionThis is the final version. Available from MDPI via the DOI in this record. en_GB
dc.descriptionData Availability Statement: The data are available from the lead author upon reasonable requestsen_GB
dc.identifier.eissn1424-8220
dc.identifier.journalSensorsen_GB
dc.relation.ispartofSensors, 23(10)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-05-10
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-05-13
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-05-17T15:21:58Z
refterms.versionFCDVoR
refterms.dateFOA2023-05-17T15:25:01Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-05-13


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Except where otherwise noted, this item's licence is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).