Show simple item record

dc.contributor.authorSmith, T
dc.contributor.authorZotta, R-M
dc.contributor.authorBoulton, CA
dc.contributor.authorLenton, TM
dc.contributor.authorDorigo, W
dc.contributor.authorBoers, N
dc.date.accessioned2023-06-22T09:35:55Z
dc.date.issued2023-02-14
dc.date.updated2023-06-21T14:14:06Z
dc.description.abstractMany widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process - rather than actual changes in the dynamical properties of the system - is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience.en_GB
dc.description.sponsorshipHorizon 2020en_GB
dc.description.sponsorshipMarie Skłodowska-Curie Actionsen_GB
dc.description.sponsorshipBundesministerium für Bildung und Forschungen_GB
dc.description.sponsorshipBrandenburger Staatsministerium für Wissenschaft, Forschung und Kultur (NEXUS)en_GB
dc.format.extent173-183
dc.identifier.citationVol. 14, No. 1, pp. 173-183en_GB
dc.identifier.doihttps://doi.org/10.5194/esd-14-173-2023
dc.identifier.grantnumber820970en_GB
dc.identifier.grantnumber956170en_GB
dc.identifier.grantnumber01LS2001Aen_GB
dc.identifier.urihttp://hdl.handle.net/10871/133469
dc.identifierORCID: 0000-0001-7836-9391 (Boulton, Chris A)
dc.identifierORCID: 0000-0002-6725-7498 (Lenton, Timothy M)
dc.language.isoenen_GB
dc.publisherCopernicus Publications / European Geosciences Unionen_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.2575599en_GB
dc.relation.urlhttps://doi.org/10.3390/rs6086929en_GB
dc.relation.urlhttps://doi.org/10.5067/MODIS/MCD12Q1.061en_GB
dc.relation.urlhttps://doi.org/10.5067/MODIS/MOD13C1.006en_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.7009414en_GB
dc.rights© Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.en_GB
dc.titleReliability of resilience estimation based on multi-instrument time seriesen_GB
dc.typeArticleen_GB
dc.date.available2023-06-22T09:35:55Z
dc.identifier.issn2190-4979
dc.descriptionThis is the final version. Available from Copernicus Publications via the DOI in this record. en_GB
dc.descriptionCode and data availability: Data used in this study are publicly available from Moesinger et al. (2020) (https://doi.org/10.5281/zenodo.2575599, Moesinger et al., 2019), https://doi.org/10.3390/rs6086929 (Pinzon and Tucker, 2014), https://doi.org/10.5067/MODIS/MCD12Q1.061 (Friedl and Sulla-Menashe, 2015), and https://doi.org/10.5067/MODIS/MOD13C1.006 (Didan, 2015). Code to reproduce the synthetic data used in this study can be found on Zenodo: https://doi.org/10.5281/zenodo.7009414 (Smith and Boers, 2022)en_GB
dc.identifier.eissn2190-4987
dc.identifier.journalEarth System Dynamicsen_GB
dc.relation.ispartofEarth System Dynamics, 14(1)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-01-28
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-02-14
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-06-22T09:31:48Z
refterms.versionFCDVoR
refterms.dateFOA2023-06-22T09:36:00Z
refterms.panelCen_GB
refterms.dateFirstOnline2023-02-14


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.
Except where otherwise noted, this item's licence is described as © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.