dc.contributor.author | Zhang, C | |
dc.contributor.author | Huang, B | |
dc.contributor.author | Li, H | |
dc.contributor.author | Chen, H | |
dc.contributor.author | Yu, T | |
dc.contributor.author | Zhang, B | |
dc.contributor.author | Wang, S | |
dc.contributor.author | Liu, C | |
dc.contributor.author | Luo, Y | |
dc.contributor.author | Maier, SA | |
dc.contributor.author | Li, X | |
dc.date.accessioned | 2023-07-10T07:34:19Z | |
dc.date.issued | 2023-07-04 | |
dc.date.updated | 2023-07-08T09:13:36Z | |
dc.description.abstract | Hot electron photodetection based on metallic nanostructures is attracting significant attention due to its potential to overcome the limitation of the traditional semiconductor bandgap. To enable efficient hot electron photodetection for practical applications, it is necessary to achieve broadband and perfect light absorption within extremely thin plasmonic nanostructures using cost-effective fabrication techniques. In this study, an ultrahigh optical absorption (up to 97.3% in average across the spectral range of 1200−2400 nm) is demonstrated in the ultrathin plasmonic nanoneedle arrays (NNs) with thickness of 10 nm, based on an all-wet metal-assisted chemical etching process. The efficient hot electron generation, transport, and injection at the nanoscale apex of the nanoneedles facilitate the photodetector to achieve a record low noise equivalent power (NEP) of 4.4 × 10−12 W Hz−0.5 at the wavelength of 1300 nm. The hot-electron generation and injection process are elucidated through a transport model based on a Monte Carlo approach, which quantitatively matches the experimental data. The photodetector is further integrated into a light imaging system, as a demonstration of the exceptional imaging capabilities at the near-IR regime. The study presents a lithography-free, scalable, and cost-effective approach to enhance hot electron photodetection, with promising prospects for future imaging systems. | en_GB |
dc.description.sponsorship | National Natural Science Foundation of China | en_GB |
dc.description.sponsorship | Suzhou Science and Technology Plan | en_GB |
dc.description.sponsorship | Jiangsu Provincial Key Laboratory of Advanced Optical Manufacturing Technology | en_GB |
dc.description.sponsorship | Natural Science Foundation of Jiangsu Province | en_GB |
dc.description.sponsorship | Natural Science Foundation of the Jiangsu Higher Education Institutions of China | en_GB |
dc.description.sponsorship | Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.description.sponsorship | Agency for Science, Technology and Research (A*STAR) | en_GB |
dc.description.sponsorship | National Research Foundation | en_GB |
dc.identifier.citation | Article 2304368 | en_GB |
dc.identifier.doi | https://doi.org/10.1002/adfm.202304368 | |
dc.identifier.grantnumber | 62120106001 | en_GB |
dc.identifier.grantnumber | 62004134 | en_GB |
dc.identifier.grantnumber | SYG202124 | en_GB |
dc.identifier.grantnumber | ZZ2112 | en_GB |
dc.identifier.grantnumber | BK20200857 | en_GB |
dc.identifier.grantnumber | 20KJA510003 | en_GB |
dc.identifier.grantnumber | EP/W017075/1 | en_GB |
dc.identifier.grantnumber | A20E5c0095 | en_GB |
dc.identifier.grantnumber | NRF-CRP22-2019-0006 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/133571 | |
dc.identifier | ORCID: 0000-0003-1196-7447 (Liu, Changxu) | |
dc.language.iso | en | en_GB |
dc.publisher | Wiley | en_GB |
dc.rights.embargoreason | Under embargo until 4 July 2024 in compliance with publisher policy | en_GB |
dc.rights | © 2023 Wiley-VCH GmbH | en_GB |
dc.subject | Hot electron | en_GB |
dc.subject | near-IR photodetection | en_GB |
dc.subject | imaging | en_GB |
dc.subject | plasmonic nanoneedles | en_GB |
dc.title | Plasmonic Nanoneedle Arrays with Enhanced Hot Electron Photodetection for Near‐IR Imaging | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2023-07-10T07:34:19Z | |
dc.identifier.issn | 1616-301X | |
dc.description | This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record | en_GB |
dc.description | Data Availability Statement:
The data that support the findings of this study are available from the corresponding author upon reasonable request. | en_GB |
dc.identifier.eissn | 1616-3028 | |
dc.identifier.journal | Advanced Functional Materials | en_GB |
dc.relation.ispartof | Advanced Functional Materials | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2023-07-04 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2023-07-10T07:26:40Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2024-07-03T23:00:00Z | |
refterms.panel | B | en_GB |
refterms.dateFirstOnline | 2023-07-04 | |