Show simple item record

dc.contributor.authorCox, I
dc.contributor.authorBrewin, RJW
dc.contributor.authorDall'Olmo, G
dc.contributor.authorSheen, K
dc.contributor.authorSathyendranath, S
dc.contributor.authorRasse, R
dc.contributor.authorUlloa, O
dc.date.accessioned2023-07-21T10:22:59Z
dc.date.issued2023-07-19
dc.date.updated2023-07-21T09:41:24Z
dc.description.abstractWe use data collected by Biogeochemical Argo (BGC-Argo) float, over a 5-year period (2016–2021), to study the dynamics of a unique low-oxygen-adapted phytoplanktonic community in the eastern tropical North Pacific. We isolate this community using a model that partitions vertical profiles of chlorophyll a (Chl a) and particulate backscattering into the contributions of three communities of phytoplankton: C1, the community in the mixed-layer; C2, at the deep Chl a maximum; and C3, in low-oxygen waters at the base of the euphotic zone. We find that C3 has a similar chl-specific particulate backscattering to C2, both lower than C1. C2 and C3 contribute significantly to integrated stocks of Chl a, both at around 41%, and both around 30% of integrated particulate backscattering (after removing a background signal attributed to nonalgal particles). Found at depths of around 100 m, the peak biomass of C3 is lower than C2 (located at around 60 m), and yet, C3 makes similar contributions to integrated stocks, because it has a broader peak than C2. In relation to C1 and C2, C3 thrives in a lower temperature, higher density, lower light, lower oxygen, and higher saline habitat. This work illustrates how BGC-Argo floats, in combination with simple conceptual models, can be used to observe the dynamics of unique communities of phytoplankton in extreme environments. The projected climate-driven changes in oxygen minimum zones add urgency to understand the vulnerabilities of these communities both in terms of stocks and composition.en_GB
dc.description.sponsorshipEuropean Space Agencyen_GB
dc.description.sponsorshipUK Research and Innovationen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipRoyal Societyen_GB
dc.description.sponsorshipSimons Foundationen_GB
dc.description.sponsorshipUniversity of Exeteren_GB
dc.identifier.citationPublished online 19 July 2023en_GB
dc.identifier.doihttps://doi.org/10.1002/lno.12404
dc.identifier.grantnumberD1094.SC6en_GB
dc.identifier.grantnumberMR/V022792/1en_GB
dc.identifier.grantnumber862923en_GB
dc.identifier.grantnumberNF150203en_GB
dc.identifier.grantnumber549947en_GB
dc.identifier.grantnumberMR/V022792/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133635
dc.identifierORCID: 0000-0001-5134-8291 (Brewin, Robert JW)
dc.language.isoenen_GB
dc.publisherWiley / Association for the Sciences of Limnology and Oceanographyen_GB
dc.relation.urlhttps://argo.ucsd.edu
dc.relation.urlhttps://www.ocean-ops.org
dc.rights© 2023 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.titleDistinct habitat and biogeochemical properties of low‐oxygen‐adapted tropical oceanic phytoplanktonen_GB
dc.typeArticleen_GB
dc.date.available2023-07-21T10:22:59Z
dc.identifier.issn0024-3590
dc.descriptionThis is the final version. Available on open access from Wiley via the DOI in this record. en_GB
dc.descriptionData availability statement: These data were collected and made freely available by the International Argo Program and the national programs that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. All data and code used in the article are provided openly on a GitHub page (https://github.com/rjbrewin/Three-community-phyto-model). This includes an example Jupyter Notebook Python Script, processing this BGC-Argo float and tuning the models.
dc.identifier.eissn1939-5590
dc.identifier.journalLimnology and Oceanographyen_GB
dc.relation.ispartofLimnology and Oceanography
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-06-28
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-07-19
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-07-21T10:18:40Z
refterms.versionFCDVoR
refterms.dateFOA2023-07-21T10:23:09Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-07-19


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's licence is described as © 2023 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.