dc.contributor.author | Morten, JM | |
dc.contributor.author | Buchanan, PJ | |
dc.contributor.author | Egevang, C | |
dc.contributor.author | Glissenaar, IA | |
dc.contributor.author | Maxwell, SM | |
dc.contributor.author | Parr, N | |
dc.contributor.author | Screen, JA | |
dc.contributor.author | Vigfúsdóttir, F | |
dc.contributor.author | Vogt‐Vincent, NS | |
dc.contributor.author | Williams, DA | |
dc.contributor.author | Williams, NC | |
dc.contributor.author | Witt, MJ | |
dc.contributor.author | Hawkes, LA | |
dc.contributor.author | Thurston, W | |
dc.date.accessioned | 2023-07-28T13:50:43Z | |
dc.date.issued | 2023-07-26 | |
dc.date.updated | 2023-07-28T12:58:26Z | |
dc.description.abstract | Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: ‘middle-of-the-road’ and ‘fossil-fuelled development’ scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a ‘fossil-fuelled development’ scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s−1) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species. | en_GB |
dc.description.sponsorship | Natural Environment Research Council (NERC) | en_GB |
dc.description.sponsorship | German Federal Ministry of Education and Research (BMBF) | en_GB |
dc.description.sponsorship | University of Bristol | en_GB |
dc.description.sponsorship | Science and Technology Facilities Council (STFC) | en_GB |
dc.description.sponsorship | National Geographic | en_GB |
dc.identifier.citation | Published online 26 July 2023 | en_GB |
dc.identifier.doi | https://doi.org/10.1111/gcb.16891 | |
dc.identifier.grantnumber | NE/L002434/1 | en_GB |
dc.identifier.grantnumber | NE/P006035/1 | en_GB |
dc.identifier.grantnumber | ST/V506667/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/133669 | |
dc.identifier | ORCID: 0000-0002-5783-9777 (Morten, Joanne M) | |
dc.identifier | ORCID: 0000-0003-1728-783X (Screen, James A) | |
dc.identifier | ORCID: 0000-0002-9498-5378 (Witt, Matthew J) | |
dc.identifier | ScopusID: 14013141600 (Witt, Matthew J) | |
dc.identifier | ResearcherID: V-3318-2018 (Witt, Matthew J) | |
dc.identifier | ORCID: 0000-0002-6696-1862 (Hawkes, Lucy A) | |
dc.language.iso | en | en_GB |
dc.publisher | Wiley | en_GB |
dc.relation.url | https://data.seabirdtracking.org/dataset | en_GB |
dc.relation.url | https://doi.org/10.5061/dryad.d6080nt | en_GB |
dc.relation.url | https://data.seabirdtracking.org/dataset/739 | en_GB |
dc.relation.url | https://jasmin.ac.uk/ | en_GB |
dc.relation.url | https://esgf.llnl.gov/ | en_GB |
dc.relation.url | https://resources.marine.copernicus.eu/ | en_GB |
dc.rights | © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | en_GB |
dc.subject | arctic tern | en_GB |
dc.subject | climate change | en_GB |
dc.subject | CMIP6 | en_GB |
dc.subject | migration | en_GB |
dc.subject | net primary productivity | en_GB |
dc.subject | sea ice | en_GB |
dc.subject | Sterna paradisaea | en_GB |
dc.subject | wind | en_GB |
dc.title | Global warming and arctic terns: Estimating climate change impacts on the world's longest migration | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2023-07-28T13:50:43Z | |
dc.identifier.issn | 1354-1013 | |
dc.description | This is the final version. Available on open access from Wiley via the DOI in this record | en_GB |
dc.description | Data availability statement: Tracking data: The tracking data that were collected and support the findings of this study are available in the Seabird Tracking Database at 2356146398 https://data.seabirdtracking.org/dataset, reference number 1905.
Additional tracking data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.d6080nt and available upon request at https://data.seabirdtracking.org/dataset/739. Environmental variables: The data that support the findings of this study are openly available in JASMIN at https://jasmin.ac.uk/. All CMIP6 model output is freely available on the Earth System Grid Federation (https://esgf.llnl.gov/). Global ocean biogeochemistry hindcast simulations are available on the Copernicus Marine Database (https://resources.marine.copernicus.eu/). | en_GB |
dc.identifier.eissn | 1365-2486 | |
dc.identifier.journal | Global Change Biology | en_GB |
dc.relation.ispartof | Global Change Biology | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2023-07-01 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2023-07-26 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2023-07-28T13:45:50Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2023-07-28T13:50:45Z | |
refterms.panel | A | en_GB |
refterms.dateFirstOnline | 2023-07-26 | |