Show simple item record

dc.contributor.authorCarvalho, RL
dc.contributor.authorResende, AF
dc.contributor.authorBarlow, J
dc.contributor.authorFrança, FM
dc.contributor.authorMoura, MR
dc.contributor.authorMaciel, R
dc.contributor.authorAlves-Martins, F
dc.contributor.authorShutt, J
dc.contributor.authorNunes, CA
dc.contributor.authorElias, F
dc.contributor.authorSilveira, JM
dc.contributor.authorStegmann, L
dc.contributor.authorBaccaro, FB
dc.contributor.authorJuen, L
dc.contributor.authorSchietti, J
dc.contributor.authorAragão, L
dc.contributor.authorBerenguer, E
dc.contributor.authorCastello, L
dc.contributor.authorCosta, FRC
dc.contributor.authorGuedes, ML
dc.contributor.authorLeal, CG
dc.contributor.authorLees, AC
dc.contributor.authorIsaac, V
dc.contributor.authorNascimento, RO
dc.contributor.authorPhillips, OL
dc.contributor.authorSchmidt, FA
dc.contributor.authorTer Steege, H
dc.contributor.authorVaz-de-Mello, F
dc.contributor.authorVenticinque, EM
dc.contributor.authorVieira, ICG
dc.contributor.authorZuanon, J
dc.contributor.authorSynergize Consortium
dc.contributor.authorFerreira, J
dc.date.accessioned2023-09-13T14:21:00Z
dc.date.issued2023-07-19
dc.date.updated2023-09-13T13:49:48Z
dc.description.abstractBiodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.en_GB
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico (CNPq)en_GB
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico (CNPq)en_GB
dc.description.sponsorshipSão Paulo Research Foundation (FAPESP)en_GB
dc.description.sponsorshipSão Paulo Research Foundation (FAPESP)en_GB
dc.description.sponsorshipSão Paulo Research Foundation (FAPESP)en_GB
dc.description.sponsorshipSão Paulo Research Foundation (FAPESP)en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipUniversity of Bristol (PolicyBristol)en_GB
dc.description.sponsorshipUniversity of Bristol Climate and Net Zero Impact Awardsen_GB
dc.description.sponsorshipUniversity of Bristol Elizabeth Blackwell Institute Rapid Research Fundingen_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipEuropean Union’s Horizon 2020en_GB
dc.format.extent3495-3504.e4
dc.format.mediumPrint-Electronic
dc.identifier.citationVol. 33, No. 16, pp. 3495-3504en_GB
dc.identifier.doihttps://doi.org/10.1016/j.cub.2023.06.077
dc.identifier.grantnumber151221/2021-9en_GB
dc.identifier.grantnumber150196/2020-2en_GB
dc.identifier.grantnumber2022/07381-9en_GB
dc.identifier.grantnumber2019/24049-5en_GB
dc.identifier.grantnumber2021/11840-6en_GB
dc.identifier.grantnumber2022/12231-6en_GB
dc.identifier.grantnumberNE/S011811/1en_GB
dc.identifier.grantnumber1989427en_GB
dc.identifier.grantnumber170839en_GB
dc.identifier.grantnumber2208557en_GB
dc.identifier.grantnumberNE/S01084X/1en_GB
dc.identifier.grantnumber854248en_GB
dc.identifier.urihttp://hdl.handle.net/10871/133984
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/37473761en_GB
dc.rights© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectBrazilen_GB
dc.subjectbiodiversityen_GB
dc.subjectbiological diversityen_GB
dc.subjectcommunity assessmenten_GB
dc.subjectconservation scienceen_GB
dc.subjectinformation deficitsen_GB
dc.subjectknowledge gapen_GB
dc.subjectspatial biasen_GB
dc.titlePervasive gaps in Amazonian ecological research.en_GB
dc.typeArticleen_GB
dc.date.available2023-09-13T14:21:00Z
dc.identifier.issn0960-9822
exeter.place-of-publicationEngland
dc.descriptionThis is the final version. Available from Elsevier via the DOI in this record. en_GB
dc.descriptionData and code availability: • Metadata have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key resources table. • All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table. • Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.en_GB
dc.identifier.eissn1879-0445
dc.identifier.journalCurrent Biologyen_GB
dc.relation.ispartofCurr Biol, 33(16)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-06-28
dc.rights.licenseCC BY
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-07-19
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-09-13T14:07:23Z
refterms.versionFCDVoR
refterms.dateFOA2023-09-13T14:21:02Z
refterms.panelCen_GB
refterms.dateFirstOnline2023-07-19


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).