Show simple item record

dc.contributor.authorZheng, F
dc.contributor.authorYin, H
dc.contributor.authorMa, Y
dc.contributor.authorDuan, H
dc.contributor.authorGupta, H
dc.contributor.authorSavic, D
dc.contributor.authorKapelan, Z
dc.date.accessioned2023-10-05T09:28:46Z
dc.date.issued2023-08-15
dc.date.updated2023-10-05T06:50:55Z
dc.description.abstractUnder global climate change, urban flooding occurs frequently, leading to huge economic losses and human casualties. Extreme rainfall is one of the direct and key causes of urban flooding, and accurate rainfall estimates at high spatiotemporal resolution are of great significance for real-time urban flood forecasting. Using existing rainfall intensity measurement technologies, including ground rainfall gauges, ground-based radar, and satellite remote sensing, it is challenging to obtain estimates of the desired quality and resolution. However, an approach based on processing distributed surveillance camera network imagery through machine learning algorithms to estimate rainfall intensities shows considerable promise. Here, we present a novel approach that first extracts raindrop information from the surveillance camera images (rather than using the raw imagery directly), followed by the use of convolutional neural networks to estimate rainfall intensity from the resulting raindrop information. Evaluation of the approach on 12 rainfall events under both daytime and nighttime conditions shows that generalization ability, and especially nighttime predictive performance, is significantly improved. This represents an important step toward achieving real-time, high spatiotemporal resolution, measurement of urban rainfall at relatively low cost.en_GB
dc.description.sponsorshipNSFC-RGC Joint Research Scheme (JRS)en_GB
dc.identifier.citationVol. 59(8), article e2023WR034831en_GB
dc.identifier.doihttps://doi.org/10.1029/2023wr034831
dc.identifier.grantnumber52261160379, N_PolyU599/22en_GB
dc.identifier.urihttp://hdl.handle.net/10871/134170
dc.identifierORCID: 0000-0001-9567-9041 (Savic, Dragan)
dc.identifierScopusID: 35580202000 (Savic, Dragan)
dc.identifierResearcherID: G-2071-2012 | L-8559-2019 (Savic, Dragan)
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU) / Wileyen_GB
dc.relation.urlhttps://doi.org/10.6084/m9.figshare.22122500.v1en_GB
dc.rights© 2023. American Geophysical Union.en_GB
dc.subjecturban floodingen_GB
dc.subjectsurveillance camera imageryen_GB
dc.subjectimage decompositionen_GB
dc.subjectrainfall intensity estimationen_GB
dc.subjectextraction of raindrop informationen_GB
dc.subjectdeep learningen_GB
dc.subjectconvolutional neural networks (CNNs)en_GB
dc.titleToward Improved Real‐Time Rainfall Intensity Estimation Using Video Surveillance Camerasen_GB
dc.typeArticleen_GB
dc.date.available2023-10-05T09:28:46Z
dc.identifier.issn0043-1397
exeter.article-numberARTN e2023WR034831
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Geophysical Union via the DOI in this recorden_GB
dc.descriptionData Availability Statement: The rainfall event videos and the measured rainfall data can be downloaded from https://doi.org/10.6084/m9.figshare.22122500.v1en_GB
dc.identifier.eissn1944-7973
dc.identifier.journalWater Resources Researchen_GB
dc.relation.ispartofWater Resources Research, 59(8)
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2023-08-11
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-08-15
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-10-05T09:26:30Z
refterms.versionFCDAM
refterms.dateFOA2023-10-05T09:28:47Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-08-15


Files in this item

This item appears in the following Collection(s)

Show simple item record