Show simple item record

dc.contributor.authorPardo, S
dc.contributor.authorTilstone, GH
dc.contributor.authorBrewin, RJW
dc.contributor.authorDall'Olmo, G
dc.contributor.authorLin, J
dc.contributor.authorNencioli, F
dc.contributor.authorEvers-King, H
dc.contributor.authorCasal, TGD
dc.contributor.authorDonlon, CJ
dc.date.accessioned2023-11-02T11:11:43Z
dc.date.issued2023-10-31
dc.date.updated2023-11-02T08:45:41Z
dc.description.abstractHigh quality independent ground measurements that are traceable to metrology standards, with a full uncertainty budget, are required for validation over the lifetime of ocean-colour satellite missions. In this paper, we used radiometric Fiducial Reference Measurements (FRM) collected during four Atlantic Meridional Transect (AMT) field campaigns from 2016 to 2019 to assess the performance of radiometric products from the Ocean and Land Colour Instrument (OLCI) aboard Sentinel-3A (S-3A) and 3B (S‐3B), the Moderate Resolution Imaging Spectroradiometer instrument aboard Aqua (MODIS-Aqua), and the Visible Infrared Imaging Radiometer Suite instrument aboard Suomi NPP and NOAA-20 (Suomi-VIIRS and NOAA-20 VIIRS). The AMT provides one of the few sampling platforms that make high-quality in situ radiometric measurements in oligotrophic, low chlorophyll-a oceanic waters for ocean colour satellite validation. In situ data were acquired and processed following established FRM protocols, calibrated to metrology standards, referenced to inter-comparison exercises and with a full uncertainty budget. From these we selected an uncertainty threshold, which we used as part of a matchup procedure that takes into account the temporal and spatial variability of both the in situ and satellite data. Three atmospheric correction models were compared for S-3A and S‐3B OLCI radiometric products; the standard OLCI IPF-OL-2, POLYMER and NASA SeaDAS l2gen. Based on the round-robin comparison, POLYMER provided the best performance in the retrieval of water-leaving radiances. The analysis showed that Suomi-VIIRS and MODIS-Aqua performed better than NOAA-20 VIIRS, and comparably with S‐3B OLCI standard products. The S-3A OLCI standard product outperformed the NASA products. The S-3A OLCI and S‐3B OLCI instruments were also compared during their tandem phase, which showed that S‐3B OLCI radiances were systematically higher than S-3A OLCI across the spectrum.en_GB
dc.description.sponsorshipEuropean Space Agencyen_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipNational Centre for Earth Observation (NCEO)en_GB
dc.description.sponsorshipUKRIen_GB
dc.format.extent113844-113844
dc.identifier.citationVol. 299, article 113844en_GB
dc.identifier.doihttps://doi.org/10.1016/j.rse.2023.113844
dc.identifier.grantnumberESRIN/RFQ/3-14457/16/I-BGen_GB
dc.identifier.grantnumber000125730/18/NL/FF/gpen_GB
dc.identifier.grantnumber4000136286/21/NL/FF/aben_GB
dc.identifier.grantnumberMR/V022792/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/134397
dc.identifierORCID: 0000-0001-5134-8291 (Brewin, Robert JW)
dc.identifierScopusID: 35725269400 (Brewin, Robert JW)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/en_GB
dc.subjectSentinel-3en_GB
dc.subjectOLCIen_GB
dc.subjectValidationen_GB
dc.subjectAtmospheric correctionen_GB
dc.subjectAtlantic Oceanen_GB
dc.subjectMODISen_GB
dc.subjectVIIRSen_GB
dc.subjectSentinel-3A and 3B tandem phaseen_GB
dc.subjectWater leaving radianceen_GB
dc.subjectOcean colouren_GB
dc.titleRadiometric assessment of OLCI, VIIRS, and MODIS using fiducial reference measurements along the Atlantic Meridional Transecten_GB
dc.typeArticleen_GB
dc.date.available2023-11-02T11:11:43Z
dc.identifier.issn0034-4257
exeter.article-number113844
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability Data will be made available on request.en_GB
dc.identifier.journalRemote Sensing of Environmenten_GB
dc.relation.ispartofRemote Sensing of Environment, 299
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2023-10-02
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-10-31
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-11-02T11:08:20Z
refterms.versionFCDVoR
refterms.dateFOA2023-11-02T11:11:51Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's licence is described as © 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/