Show simple item record

dc.contributor.authorArzaee, NA
dc.contributor.authorYodsin, N
dc.contributor.authorUllah, H
dc.contributor.authorSultana, S
dc.contributor.authorMohamad Noh, MF
dc.contributor.authorMahmood Zuhdi, AW
dc.contributor.authorMohd Yusoff, ARB
dc.contributor.authorJungsuttiwong, S
dc.contributor.authorMat Teridi, MA
dc.date.accessioned2023-11-14T09:57:10Z
dc.date.issued2023-10-17
dc.date.updated2023-11-13T17:43:00Z
dc.description.abstractIn light of recent doubts surrounding the industrial viability of photo(electro)catalysis technology for sustainable hydrogen production, it becomes imperative to align materials development with rationalized synthesis protocols. In this study, we present an innovative technique utilizing atmospheric-pressure chemical vapor deposition (APCVD) to rapidly produce TiO2 in just 5 minutes using pure TiCl4 as the sole reagent. The resulting photoanode exhibits exceptional photoelectrochemical (PEC) water-splitting performance, achieving a photocurrent density of 2.06 mA cm−2 at 1.23 V RHE. Moreover, the photoanode demonstrates sustained operation for 16 hours, leading to the successful collection of 138 μmol of H2 and 62 μmol of O2. These remarkable results are attributed to the controlled formation of an anatase–rutile phase-junction, the presence of well-balanced oxygen vacancies, and the bifrustum nanoparticle–nanoflake structure with a unique light trapping effect and large surface area. Density functional theory calculations confirm that the water-splitting reaction primarily occurs at undercoordinated Ti and O atoms in both anatase and rutile TiO2. Notably, the calculated Gibbs free energy values for the hydrogen evolution reaction (HER) differ significantly between rutile (−0.86 eV) and anatase TiO2 (0.22 eV). In the heterojunction, charge transfer enhances the HER performance through shared electronic density, resulting in a synergistic effect that surpasses the capabilities of individual surfaces and underscores the importance of electronic interactions within the junction.en_GB
dc.description.sponsorshipUniversiti Kebangsaan Malaysiaen_GB
dc.description.sponsorshipCenter of Excellence for Innovation in Chemistryen_GB
dc.description.sponsorshipProgram Management Unit for Human Resources & Institutional Development, Research and Innovationen_GB
dc.description.sponsorshipHuman Resource Development in Science Project Science Achievement Scholarship of Thailand (SAST)en_GB
dc.identifier.citationPublished online 17 October 2023en_GB
dc.identifier.doihttps://doi.org/10.1039/d3cy00918a
dc.identifier.grantnumberGUP-2020-073en_GB
dc.identifier.grantnumberB05F630099en_GB
dc.identifier.urihttp://hdl.handle.net/10871/134517
dc.identifierORCID: 0000-0001-9290-0265 (Ullah, Habib)
dc.identifierScopusID: 57531625900 (Ullah, Habib)
dc.identifierResearcherID: S-9557-2019 (Ullah, Habib)
dc.language.isoenen_GB
dc.publisherRoyal Society of Chemistry (RSC)en_GB
dc.rights© The Royal Society of Chemistry 2023. Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licenceen_GB
dc.titleEnhanced hydrogen evolution reaction performance of anatase–rutile TiO2 heterojunction via charge transfer from rutile to anataseen_GB
dc.typeArticleen_GB
dc.date.available2023-11-14T09:57:10Z
dc.identifier.issn2044-4753
dc.descriptionThis is the final version. Available on open access from the Royal Society of Chemistry via the DOI in this recorden_GB
dc.identifier.eissn2044-4761
dc.identifier.journalCatalysis Science & Technologyen_GB
dc.relation.ispartofCatalysis Science & Technology
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_GB
dcterms.dateAccepted2023-10-17
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-10-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-11-14T09:53:15Z
refterms.versionFCDVoR
refterms.dateFOA2023-11-14T09:57:15Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Royal Society of Chemistry 2023. Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence
Except where otherwise noted, this item's licence is described as © The Royal Society of Chemistry 2023. Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence