Show simple item record

dc.contributor.authorAziz, Mustafa M.
dc.contributor.authorWright, C. David
dc.date.accessioned2013-09-11T15:24:06Z
dc.date.issued2013
dc.description.abstractA very good approximate, closed-form solution to the reaction rate equation with Arrhenius temperature dependence is derived, valid for activation energies E >> kBxT0 (kB is Boltzmann constant and T0 is room temperature) and monotonically decreasing temperatures. This solution is then used to develop a transfer function description of the reaction rate equation, enabling the bandwidth of the reaction rate to be determined and related to the kinetic and thermophysical parameters of the medium. Applications of the transfer function approach to understanding and predicting reaction (i.e. crystallization) rates in phase-change materials and devices are discussed.en_GB
dc.identifier.citationVol. 103 (11), article 113501en_GB
dc.identifier.doi10.1063/1.4820696
dc.identifier.urihttp://hdl.handle.net/10871/13482
dc.language.isoenen_GB
dc.publisherAmerican Institute of Physics (AIP)en_GB
dc.relation.urlhttp://dx.doi.org/10.1063/1.4820696en_GB
dc.subjectconstantsen_GB
dc.subjectphase change materialsen_GB
dc.subjectreaction rate constantsen_GB
dc.subjecttransfer functionsen_GB
dc.titleA transfer function approach to reaction rate analysis with applications to phase-change materials and devicesen_GB
dc.typeArticleen_GB
dc.date.available2013-09-11T15:24:06Z
dc.identifier.issn0003-6951
dc.descriptionCopyright © 2013 American Institute of Physics. The following article appeared in Applied Physics Letters Vol. 103 (11) and may be found at http://dx.doi.org/10.1063/1.4820696en_GB
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.en_GB
dc.identifier.eissn1077-3118
dc.identifier.journalApplied Physics Lettersen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record