Show simple item record

dc.contributor.authorBinks, O
dc.contributor.authorCernusak, LA
dc.contributor.authorLiddell, M
dc.contributor.authorBradford, M
dc.contributor.authorCoughlin, I
dc.contributor.authorBryant, C
dc.contributor.authorPalma, AC
dc.contributor.authorHoffmann, L
dc.contributor.authorAlam, I
dc.contributor.authorCarle, HJ
dc.contributor.authorRowland, L
dc.contributor.authorOliveira, RS
dc.contributor.authorLaurance, SGW
dc.contributor.authorMencuccini, M
dc.contributor.authorMeir, P
dc.date.accessioned2024-01-08T11:46:51Z
dc.date.issued2023-09-14
dc.date.updated2024-01-08T09:41:23Z
dc.description.abstractAtmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.en_GB
dc.description.sponsorshipAustralian Research Council (ARC)en_GB
dc.description.sponsorshipCatalan science and technology grant, Beatriu de Pinósen_GB
dc.format.extent1405-1420
dc.format.mediumPrint-Electronic
dc.identifier.citationVol. 240(4), pp. 1405-1420en_GB
dc.identifier.doihttps://doi.org/10.1111/nph.19257
dc.identifier.grantnumberDP17010409en_GB
dc.identifier.grantnumberBP2021 00224en_GB
dc.identifier.urihttp://hdl.handle.net/10871/134933
dc.identifierORCID: 0000-0002-0774-3216 (Rowland, Lucy)
dc.identifierScopusID: 55789919100 (Rowland, Lucy)
dc.language.isoenen_GB
dc.publisherWiley / New Phytologist Foundationen_GB
dc.relation.urlhttps://doi.org/10.25901/86yk-5m77en_GB
dc.rights© 2023 The Authors. © 2023 New Phytologist Foundation. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_GB
dc.subjectallometryen_GB
dc.subjectcanopy conductanceen_GB
dc.subjectcanopy-atmosphere couplingen_GB
dc.subjectdrought stressen_GB
dc.subjecthydraulic vulnerabilityen_GB
dc.subjectrainforest hydraulicsen_GB
dc.subjecttree heighten_GB
dc.subjectvapour pressure deficiten_GB
dc.titleVapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supplyen_GB
dc.typeArticleen_GB
dc.date.available2024-01-08T11:46:51Z
dc.identifier.issn0028-646X
exeter.place-of-publicationEngland
dc.descriptionThis is the final version. Available on open access from Wiley via the DOI in this recorden_GB
dc.descriptionData availability: All data are available from the Terrestrial Ecosystem Research Network (TERN) Data Portal: https://portal.tern.org.au/metadata/TERN/db33762b-1199-4dbd-b151-b6ce8d5ad042. doi: https://doi.org/10.25901/86yk-5m77.en_GB
dc.identifier.eissn1469-8137
dc.identifier.journalNew Phytologisten_GB
dc.relation.ispartofNew Phytol, 240(4)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2023-08-07
dc.rights.licenseCC BY-NC-ND
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-09-14
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-01-08T11:43:59Z
refterms.versionFCDVoR
refterms.dateFOA2024-01-08T11:46:55Z
refterms.panelCen_GB
refterms.dateFirstOnline2023-09-14


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. © 2023 New Phytologist Foundation.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Except where otherwise noted, this item's licence is described as © 2023 The Authors. © 2023 New Phytologist Foundation. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.