Show simple item record

dc.contributor.authorZhao, M
dc.contributor.authorLi, X
dc.contributor.authorZhang, DZ
dc.contributor.authorZhai, W
dc.date.accessioned2024-02-22T12:59:33Z
dc.date.issued2023-02-01
dc.date.updated2024-02-22T12:33:16Z
dc.description.abstractInspired by the geometry of bamboo, this study proposes a novel bamboo-inspired body-centered cubic (B-BCC) lattice structure consisting of tapered and hollow struts. Using representative volume elements applied with periodic boundary conditions, the mechanical properties and deformation behaviors of the B-BCC lattice structures are thoroughly evaluated by considering a large number of combinations of geometric parameters and volume fractions. Results reveal that the geometric parameters highly influence the deformation behavior of the B-BCC lattice structures under uniaxial compression (e.g, from bending- to stretching-dominated) but little under shear load. For this reason, tunable elastic modulus across a broad range can be realized via adjusting the geometric parameters and elastic isotropy can be obtained across all volume fractions. On this basis, a combination of artificial neural network and elastic isotropy optimization is proposed to obtain the isotropic B-BCC lattice structures with superior elastic modulus. The optimization results show that the elastic modulus of the isotropic B-BCC lattice structures increased by 271.24–1335 % and 17.72–43.63 %, as compared to the original BCC and isotropic hollow BCC lattice structures, respectively. Finally, the multi-layer simulation and compression experiments are applied to validate the optimization results. Good agreements are observed comparing the numerical and experimental results, demonstrating the effectiveness of the proposed bamboo-inspired design and optimization method for lightweight applications with desired properties.en_GB
dc.description.sponsorshipMOE AcRFen_GB
dc.description.sponsorshipChina Scholarship Councilen_GB
dc.identifier.citationVol. 64, article 103438en_GB
dc.identifier.doihttps://doi.org/10.1016/j.addma.2023.103438
dc.identifier.grantnumberA-0009123-01-00en_GB
dc.identifier.grantnumber202006050088en_GB
dc.identifier.urihttp://hdl.handle.net/10871/135370
dc.identifierORCID: 0000-0002-1561-0923 (Zhang, David Z)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2023 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
dc.subjectBio-inspirationen_GB
dc.subjectLattice structuresen_GB
dc.subjectMechanical propertiesen_GB
dc.subjectStructural optimizationen_GB
dc.subjectAdditive manufacturingen_GB
dc.titleGeometry effect on mechanical properties and elastic isotropy optimization of bamboo-inspired lattice structuresen_GB
dc.typeArticleen_GB
dc.date.available2024-02-22T12:59:33Z
dc.identifier.issn2214-8604
exeter.article-number103438
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData Availability: Data will be made available on request.en_GB
dc.identifier.journalAdditive Manufacturingen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
dcterms.dateAccepted2023-01-30
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-02-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-02-22T12:55:49Z
refterms.versionFCDAM
refterms.dateFOA2024-02-22T12:59:40Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
Except where otherwise noted, this item's licence is described as © 2023 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/