Show simple item record

dc.contributor.authorChugh, T
dc.contributor.authorEvans, A
dc.date.accessioned2024-04-02T12:14:00Z
dc.date.issued2024-03-21
dc.date.updated2024-04-01T20:13:04Z
dc.description.abstractBoth Multi-Objective Evolutionary Algorithms (MOEAs) and Multi-Objective Bayesian Optimisation (MOBO) are designed to address challenges posed by multi-objective optimisation problems. MOBO offers the distinct advantage of managing computationally or financially expensive evaluations by constructing Bayesian models based on the dataset. MOBO employs an acquisition function to strike a balance between convergence and diversity, facilitating the selection of an appropriate decision vector. MOEAs, similarly focused on achieving convergence and diversity, employ a selection criterion. This paper contributes to the field of multi-objective optimisation by constructing Bayesian models on the selection criterion of decomposition-based MOEAs within the framework of MOBO. The modelling process incorporates both mono and multi-surrogate approaches. The findings underscore the efficacy of MOEA selection criteria in the MOBO context, particularly when adopting the multi-surrogate approach. Evaluation results on both real-world and benchmark problems demonstrate the superiority of the multi-surrogate approach over its mono-surrogate counterpart for a given selection criterion. This study emphasises the significance of bridging the gap between these two optimisation fields and leveraging their respective strengths.en_GB
dc.format.extent391-406
dc.identifier.citationIn: Applications of Evolutionary Computation, edited by Stephen Smith, João Correia, and Christian Cintrano, pp. 391 - 406. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635en_GB
dc.identifier.doihttps://doi.org/10.1007/978-3-031-56855-8_24
dc.identifier.urihttp://hdl.handle.net/10871/135664
dc.identifierORCID: 0000-0001-5123-8148 (Chugh, Tinkle)
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rights.embargoreasonUnder embargo until 21March 2025 in compliance with publisher policyen_GB
dc.rights© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AGen_GB
dc.subjectBayesian optimisationen_GB
dc.subjectGaussian processesen_GB
dc.subjectPareto optimalityen_GB
dc.subjectEvolutionary computationen_GB
dc.subjectMany-objective optimisationen_GB
dc.titleIntegrating Bayesian and Evolutionary Approaches for Multi-objective Optimisationen_GB
dc.typeConference paperen_GB
dc.date.available2024-04-02T12:14:00Z
dc.identifier.isbn9783031568541
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer via the DOI in this recorden_GB
dc.relation.ispartofApplications of Evolutionary Computation
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-03-21
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2024-04-02T12:11:30Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2024-03-21


Files in this item

This item appears in the following Collection(s)

Show simple item record