Show simple item record

dc.contributor.authorEvans, A
dc.contributor.authorChugh, T
dc.date.accessioned2024-04-02T12:29:34Z
dc.date.issued2023-08-01
dc.date.updated2024-04-01T20:16:53Z
dc.description.abstractMany machine learning algorithms require the use of good quality experimental designs to maximise the information available to the model. Various methods to create experimental designs exist, but the solutions can be sub-optimal or computationally inefficient. Multi-objective evolutionary algorithms (MOEAs), with their advantages of being able to solve a variety of problems, are a good method of creating designs. However, with such a variety of MOEAs available, it is important to know which MOEA performs best at optimising experimental designs. In this paper, we formulate experimental design creation as a multi-objective optimisation problem. We compare the performance of different MOEAs on a variety of experimental design optimisation problems, including a real-world case study. Our results show that NSGA-II can often perform better than NSGA-III in many-objective optimisation problems; RVEA performs very well; results suggest that using more objectives can create better quality designs. This knowledge allows us to make more informed decisions about how to use MOEAs when creating metamodels.en_GB
dc.format.extent145-158
dc.identifier.citationIn: Artificial Evolution 15th International Conference, Évolution Artificielle, EA 2022, Exeter, UK, 31 October 31 – 2 November 2022, edited by Pierrick Legrand, Arnaud Liefooghe, Edward Keedwell, Julien Lepagnot, Lhassane Idoumghar, Nicolas Monmarché, and Evelyne Lutton, pp. 145–158. Lecture Notes in Computer Science, vol 14091en_GB
dc.identifier.doihttps://doi.org/10.1007/978-3-031-42616-2_11
dc.identifier.urihttp://hdl.handle.net/10871/135666
dc.identifierORCID: 0000-0001-5123-8148 (Chugh, Tinkle)
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rights.embargoreasonUnder embargo until 1 September 2024 in compliance with publisher policyen_GB
dc.rights© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AGen_GB
dc.subjectPareto optimalityen_GB
dc.subjectMetamodellingen_GB
dc.subjectEvolutionary Computationen_GB
dc.titleEmpirical Investigation of MOEAs for Multi-objective Design of Experimentsen_GB
dc.typeConference paperen_GB
dc.date.available2024-04-02T12:29:34Z
dc.identifier.isbn9783031426155
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer via the DOI in this recorden_GB
dc.relation.ispartofArtificial Evolution
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-09-01
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2024-04-02T12:27:05Z
refterms.versionFCDAM
refterms.dateFOA2024-08-31T23:00:00Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-09-01


Files in this item

This item appears in the following Collection(s)

Show simple item record