Show simple item record

dc.contributor.authorLin, C
dc.contributor.authorLiu, C
dc.contributor.authorYang, J
dc.contributor.authorKim, J
dc.contributor.authorHu, L
dc.contributor.authorHuang, C
dc.contributor.authorZhang, S
dc.contributor.authorChen, F
dc.contributor.authorMishra, R
dc.contributor.authorShahrokhi, S
dc.contributor.authorHuang, J
dc.contributor.authorGuan, X
dc.contributor.authorBaldacchino, AJ
dc.contributor.authorWan, T
dc.contributor.authorHuang, S
dc.contributor.authorNielsen, MP
dc.contributor.authorLiu, K
dc.contributor.authorChu, D
dc.contributor.authorMaier, SA
dc.contributor.authorWu, T
dc.date.accessioned2024-04-15T10:48:51Z
dc.date.issued2024-04-13
dc.date.updated2024-04-14T09:18:49Z
dc.description.abstractThe rapid development of mixed‐halide perovskites has established a versatile optoelectronic platform owing to their extraordinary physical properties, but there remain challenges toward achieving highly reliable synthesis and performance, in addition, post‐synthesis approaches for tuning their photoluminescence properties after device fabrication remain limited. In this work, an effective approach is reported to leveraging hot electrons generated from plasmonic nanostructures to regulate the optical properties of perovskites. A plasmonic metasurface composed of Au nanoparticles can effectively tailor both photoluminescence and location‐specific phase segregation of mixed‐halide CsPbI<jats:sub>2</jats:sub>Br thin films. The ultrafast transient absorption spectroscopy measurements reveal hot electron injection on the timescale of hundreds of femtoseconds. Photocurrent measurements confirm the hot‐electron‐enhanced photon‐carrier conversion, and in addition, gate‐voltage tuning of phase segregation is observed because of correlated carrier injection and halide migration in the perovskite films. Finally, the characteristics of the gate‐modulated light emission are found to conform to a rectified linear unit function, serving as nonlinear electrical‐to‐optical converters in artificial neural networks. Overall, the hot electron engineering approach demonstrated in this work provides effective location‐specific control of the phase and optical properties of halide perovskites, underscoring the potential of plasmonic metasurfaces for advancing perovskite technologies.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipAustralian Research Councilen_GB
dc.description.sponsorshipAustralian Research Councilen_GB
dc.description.sponsorshipAustralian Research Councilen_GB
dc.description.sponsorshipAustralian Research Councilen_GB
dc.description.sponsorshipUniversity of New South Walesen_GB
dc.identifier.citationPublished online 13 April 2024en_GB
dc.identifier.doihttps://doi.org/10.1002/adfm.202402935
dc.identifier.grantnumberEP/W017075/1en_GB
dc.identifier.grantnumberDP190103316en_GB
dc.identifier.grantnumberDP230101847en_GB
dc.identifier.grantnumberDE230101711en_GB
dc.identifier.grantnumberDE240100179en_GB
dc.identifier.grantnumberRG163043en_GB
dc.identifier.urihttp://hdl.handle.net/10871/135744
dc.identifierORCID: 0000-0003-1196-7447 (Liu, Changxu)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.rights© 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjecthot electronen_GB
dc.subjectmixed-halideen_GB
dc.subjectperovskiteen_GB
dc.subjectphase segregationen_GB
dc.subjectphotoluminescenceen_GB
dc.subjectplasmonicsen_GB
dc.titleRegulating the phase and optical roperties of mixed‐halide perovskites via hot‐electron engineeringen_GB
dc.typeArticleen_GB
dc.date.available2024-04-15T10:48:51Z
dc.identifier.issn1616-301X
dc.descriptionThis is the final version. Available from Wiley via the DOI in this record.en_GB
dc.descriptionData Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.en_GB
dc.identifier.eissn1616-3028
dc.identifier.journalAdvanced Functional Materialsen_GB
dc.relation.ispartofAdvanced Functional Materials
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-04-13
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-04-15T10:42:32Z
refterms.versionFCDVoR
refterms.dateFOA2024-04-15T10:48:56Z
refterms.panelBen_GB
refterms.dateFirstOnline2024-04-13


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. Advanced Functional Materials published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.
Except where otherwise noted, this item's licence is described as © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.