dc.description.abstract | This thesis considered microgrids as local area distribution mini-power grids formed by distributed generation sources, energy storage systems and loads. They are reliable and can operate at different voltages and frequencies to meet the requirements of the load. Microgrids have limited renewable energy source (RES) capacity, which can only supply a limited load and increasing the load beyond a specifically designed limit can lead to stability issues. Irrespective of its limited capacity, there has been an increased widespread deployment of renewable energy-based microgrids worldwide orchestrated by the 2015 Paris Agreement and the war in Ukraine and as a solution to meet the global demand for energy in electricity deficit zones aimed to achieve universal access to affordable, reliable, and sustainable energy. Fast forward to the future, flooded singly operated microgrids face the problem of more curtailing of RES and load shedding. Multiple microgrids can be interconnected to mitigate the limitations of single microgrids and improve supply reliability, enhance power supply availability, stability, reserve capacity, reduce investment in new generating capacity and control flexibility.
As a result, this thesis proposes a new structure and control technique for interconnecting multiple standalone AC microgrids to a common alternating current (AC) bus using a back-to-back power electronic converter and a traditional transformer. Each microgrid considered in this thesis comprises a renewable energy source (RES), battery, auxiliary unit, and load. The battery maintains the AC bus voltage and frequency and balances the difference in power generated by the RES and that consumed by the load. Each microgrid battery’s charge/discharge is maintained within the safest operating limit to maximise the RES power utilisation. The back-to-back converters are used to decouple the connecting standalone microgrid frequencies and facilitate power exchange between microgrids. The transformer is used to transmit electric power over long distances efficiently. The control technique for all the connecting bidirectional back-to-back converters is developed to manage the bidirectional power flow between each microgrid and other microgrids in the network and to balance the energy in the global bus of the interconnected microgrid with no communication. The control strategy uses a frequency signalling mechanism to limit the power demand of individual global converters and adjusts its droop coefficients accordingly and in proportion to deviation in frequency. The global droop controllers of the global connecting converters receive information about the status of the frequencies of individual microgrids using a low bandwidth communication link to enhance network power flow. MATLAB/Simulink results validate the performance of the proposed structure and control strategy.
A decentralised control scheme is further proposed for the standalone interconnected AC microgrid structure. This thesis presented a high-level global droop controller that exchanges power between the interconnected microgrids. Renewable power curtailment and auxiliary power supplement mechanisms are designed based on the bus frequency signalling technique to achieve balance and continuity of supply. In case of power shortage in one microgrid, priority will first be given to power import from other microgrids. A power supplement is used if the power imported is insufficient to control the battery state of charge (SOC). Similarly, in case of a power surplus, priority will be given to power export, and if this is not enough, power from RES will be curtailed. Performance evaluation shows that the proposed controller maximises renewable power utilisation and minimises auxiliary power usage while providing better load support. The performance validation of the proposed structure and control strategy has been tested using MATLAB/Simulink.
Furthermore, this thesis investigated a centralised control and energy management of multiple interconnected standalone AC microgrids using the Nelder-Mead simplex algorithm (Fminsearch optimisation toolbox in MATLAB) based on the new proposed model. The main objective is to minimise the total cost of energy from the auxiliary unit produced from gas. The results obtained are compared with those obtained from an unoptimised system. The performance evaluation investigation results are compared with the unoptimised results to determine the percentage optimal performance of the system. The comparison outcome shows that the proposed optimisation method minimises the total auxiliary energy cost by about 9% compared with the results of the unoptimised benchmark. | en_GB |