Design of reaction-driven active configuration for enhanced CO2 electroreduction
dc.contributor.author | Chen, S | |
dc.contributor.author | Luo, T | |
dc.contributor.author | Li, X | |
dc.contributor.author | Chen, K | |
dc.contributor.author | Wang, Q | |
dc.contributor.author | Fu, J | |
dc.contributor.author | Liu, K | |
dc.contributor.author | Ma, C | |
dc.contributor.author | Lu, Y-R | |
dc.contributor.author | Li, H | |
dc.contributor.author | Menghrajani, KS | |
dc.contributor.author | Liu, C | |
dc.contributor.author | Maier, SA | |
dc.contributor.author | Chan, T-S | |
dc.contributor.author | Liu, M | |
dc.date.accessioned | 2024-06-13T14:37:17Z | |
dc.date.issued | 2024-06-10 | |
dc.date.updated | 2024-06-13T14:02:37Z | |
dc.description.abstract | Metal-nitrogen-carbon single-atom catalysts (SACs) have emerged as promising candidates for electrocatalytic CO2 reduction reaction. However, the perpendicular dz2 orbital within planar metal site mainly interacts with *COOH, resulting in inferior CO2 activation. Inspired by reaction-driven active configuration, here we propose to upshift nickel single-atom away from nitrogen-carbon substrate, prominently promoting the interaction between CO2 and other d orbitals besides dz2 . Theoretical and experimental analyses reveal that upshifting nickel site away substrate induces dxz, dyz, and dz2 to hybridize with CO2, expediting CO2 conversion to *COOH. The planar and out-of-plane Ni-N sites are formed on carbon nanosheet (Ni1-N/CNS) and curved nanoparticle (Ni1-N/CNP), respectively, which is verified by X-ray absorption fine structure spectroscopy. Impressively, the Ni1-N/CNP presents CO Faradaic efficiency of 96.4 % at 500 mA cm− 2 and energy conversion efficiency of 79.8 % in flow cell, outperforming Ni1-N/CNS and most SACs. This work highlights the simulation of reaction-driven active sites for efficient electrocatalysis. | en_GB |
dc.description.sponsorship | Natural Science Foundation of China | en_GB |
dc.description.sponsorship | International Science and Technology Cooperation | en_GB |
dc.description.sponsorship | Guangdong Basic and Applied Basic Research Foundation | en_GB |
dc.description.sponsorship | Ministry of Science and Technology, Taiwan | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.format.extent | 109873-109873 | |
dc.identifier.citation | Vol. 128 (A), article 109873 | en_GB |
dc.identifier.doi | https://doi.org/10.1016/j.nanoen.2024.109873 | |
dc.identifier.grantnumber | 21872174 | en_GB |
dc.identifier.grantnumber | 22002189 | en_GB |
dc.identifier.grantnumber | 22308387 | en_GB |
dc.identifier.grantnumber | U1932148 | en_GB |
dc.identifier.grantnumber | 2017YFE0127800 | en_GB |
dc.identifier.grantnumber | 2021A1515110907 | en_GB |
dc.identifier.grantnumber | 2023A1515011935 | en_GB |
dc.identifier.grantnumber | MOST 111-2113-M-213-001 | en_GB |
dc.identifier.grantnumber | EP/W017075/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/136277 | |
dc.identifier | ORCID: 0000-0003-1196-7447 (Liu, Changxu) | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights.embargoreason | Under embargo until 10 June 2025 in compliance with publisher policy | en_GB |
dc.rights | © 2024 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | CO2 electroreduction | en_GB |
dc.subject | Single-atom catalyst | en_GB |
dc.subject | Reaction-driven reconstruction | en_GB |
dc.subject | 3d orbital tuning | en_GB |
dc.subject | CO2 activation | en_GB |
dc.title | Design of reaction-driven active configuration for enhanced CO2 electroreduction | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2024-06-13T14:37:17Z | |
dc.identifier.issn | 2211-2855 | |
exeter.article-number | 109873 | |
dc.description | This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record | en_GB |
dc.description | Data Availability: Data will be made available on request. | en_GB |
dc.identifier.journal | Nano Energy | en_GB |
dc.relation.ispartof | Nano Energy | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dcterms.dateAccepted | 2024-06-07 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2024-06-10 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2024-06-13T14:31:27Z | |
refterms.versionFCD | AM | |
refterms.panel | B | en_GB |
exeter.rights-retention-statement | No |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2024 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0