Show simple item record

dc.contributor.authorChen, S
dc.contributor.authorLuo, T
dc.contributor.authorLi, X
dc.contributor.authorChen, K
dc.contributor.authorWang, Q
dc.contributor.authorFu, J
dc.contributor.authorLiu, K
dc.contributor.authorMa, C
dc.contributor.authorLu, Y-R
dc.contributor.authorLi, H
dc.contributor.authorMenghrajani, KS
dc.contributor.authorLiu, C
dc.contributor.authorMaier, SA
dc.contributor.authorChan, T-S
dc.contributor.authorLiu, M
dc.date.accessioned2024-06-13T14:37:17Z
dc.date.issued2024-06-10
dc.date.updated2024-06-13T14:02:37Z
dc.description.abstractMetal-nitrogen-carbon single-atom catalysts (SACs) have emerged as promising candidates for electrocatalytic CO2 reduction reaction. However, the perpendicular dz2 orbital within planar metal site mainly interacts with *COOH, resulting in inferior CO2 activation. Inspired by reaction-driven active configuration, here we propose to upshift nickel single-atom away from nitrogen-carbon substrate, prominently promoting the interaction between CO2 and other d orbitals besides dz2 . Theoretical and experimental analyses reveal that upshifting nickel site away substrate induces dxz, dyz, and dz2 to hybridize with CO2, expediting CO2 conversion to *COOH. The planar and out-of-plane Ni-N sites are formed on carbon nanosheet (Ni1-N/CNS) and curved nanoparticle (Ni1-N/CNP), respectively, which is verified by X-ray absorption fine structure spectroscopy. Impressively, the Ni1-N/CNP presents CO Faradaic efficiency of 96.4 % at 500 mA cm− 2 and energy conversion efficiency of 79.8 % in flow cell, outperforming Ni1-N/CNS and most SACs. This work highlights the simulation of reaction-driven active sites for efficient electrocatalysis.en_GB
dc.description.sponsorshipNatural Science Foundation of Chinaen_GB
dc.description.sponsorshipInternational Science and Technology Cooperationen_GB
dc.description.sponsorshipGuangdong Basic and Applied Basic Research Foundationen_GB
dc.description.sponsorshipMinistry of Science and Technology, Taiwanen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.format.extent109873-109873
dc.identifier.citationVol. 128 (A), article 109873en_GB
dc.identifier.doihttps://doi.org/10.1016/j.nanoen.2024.109873
dc.identifier.grantnumber21872174en_GB
dc.identifier.grantnumber22002189en_GB
dc.identifier.grantnumber22308387en_GB
dc.identifier.grantnumberU1932148en_GB
dc.identifier.grantnumber2017YFE0127800en_GB
dc.identifier.grantnumber2021A1515110907en_GB
dc.identifier.grantnumber2023A1515011935en_GB
dc.identifier.grantnumberMOST 111-2113-M-213-001en_GB
dc.identifier.grantnumberEP/W017075/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/136277
dc.identifierORCID: 0000-0003-1196-7447 (Liu, Changxu)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 10 June 2025 in compliance with publisher policyen_GB
dc.rights© 2024 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0en_GB
dc.subjectCO2 electroreductionen_GB
dc.subjectSingle-atom catalysten_GB
dc.subjectReaction-driven reconstructionen_GB
dc.subject3d orbital tuningen_GB
dc.subjectCO2 activationen_GB
dc.titleDesign of reaction-driven active configuration for enhanced CO2 electroreductionen_GB
dc.typeArticleen_GB
dc.date.available2024-06-13T14:37:17Z
dc.identifier.issn2211-2855
exeter.article-number109873
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData Availability: Data will be made available on request.en_GB
dc.identifier.journalNano Energyen_GB
dc.relation.ispartofNano Energy
dc.rights.urihttps://creativecommons.org/by-nc-nd/4.0en_GB
dcterms.dateAccepted2024-06-07
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-06-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-06-13T14:31:27Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0
Except where otherwise noted, this item's licence is described as © 2024 Published by Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0