Show simple item record

dc.contributor.authorMumin, D
dc.contributor.authorShi, L-L
dc.contributor.authorLiu, L
dc.contributor.authorHan, Z-X
dc.contributor.authorJiang, L
dc.contributor.authorWu, Y
dc.date.accessioned2024-07-03T12:49:37Z
dc.date.issued2024-05-16
dc.date.updated2024-07-03T12:07:52Z
dc.description.abstractObject ratings in recommendation algorithms are used to represent the extent to which a user likes an object. Most existing recommender systems use these ratings to recommend the top-K objects to a target user. To improve the accuracy and diversity of recommender systems, we proposed a neighbourhoodbased diffusion recommendation algorithm (NBD) that distributes the resources among objects using the rating scores of the objects based on the likings of the target user neighbours. Specifically, the Adamic-Adar similarity index is used to calculate the similarity between the target user and other users to select the top K similar neighbours to begin the diffusion process. In this approach, greater significance is put on common neighbours with fewer neighbour nodes. This is to reduce the effect of popular objects. At the end of the diffusion process, a modified redistribution algorithm using the sigmoid function is explored to finally redistribute the resources to the objects. This is to ensure that the objects recommended are personalized to target users. The evaluation has been conducted through experiments using four real-world datasets (Friendfeed, Epinions, MovieLens-100K, and Netflix). The experiment results show that the performance of our proposed NBD algorithm is better in terms of accuracy when compared with the state-of-the-art algorithms.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipChina Postdoctoral Science Foundationen_GB
dc.description.sponsorshipNatural Science Foundation of the Jiangsu Higher Education Institutionsen_GB
dc.description.sponsorshipJiangsu University Innovative Research Projecten_GB
dc.format.extent1-20
dc.identifier.citationPublished online 16 May 2024en_GB
dc.identifier.doihttps://doi.org/10.1007/s10115-024-02127-1
dc.identifier.grantnumber62302199en_GB
dc.identifier.grantnumber2023M731368en_GB
dc.identifier.grantnumber22KJB520016en_GB
dc.identifier.grantnumberKYCX22_3671en_GB
dc.identifier.urihttp://hdl.handle.net/10871/136559
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.rights.embargoreasonUnder embargo until 16 May 2025 in compliance with publisher policyen_GB
dc.rights© 2024, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Natureen_GB
dc.subjectRecommender systemen_GB
dc.subjectPersonalized recommendationen_GB
dc.subjectNeighborhood-based recommendationen_GB
dc.subjectDiffusion-based recommendationen_GB
dc.subjectitem recommendationen_GB
dc.titleA new neighbourhood-based diffusion algorithm for personalized recommendationen_GB
dc.typeArticleen_GB
dc.date.available2024-07-03T12:49:37Z
dc.identifier.issn0219-1377
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer via the DOI in this record en_GB
dc.identifier.eissn0219-3116
dc.identifier.journalKnowledge and Information Systemsen_GB
dc.relation.ispartofKnowledge and Information Systems
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-04-16
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-05-16
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-07-03T12:45:02Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2024-05-16


Files in this item

This item appears in the following Collection(s)

Show simple item record