Show simple item record

dc.contributor.authorFu, B
dc.contributor.authorLiang, J
dc.contributor.authorHu, J
dc.contributor.authorDu, T
dc.contributor.authorTan, Q
dc.contributor.authorHe, C
dc.contributor.authorWei, X
dc.contributor.authorGong, P
dc.contributor.authorYang, J
dc.contributor.authorLiu, S
dc.contributor.authorHuang, M
dc.contributor.authorGui, L
dc.contributor.authorLiu, K
dc.contributor.authorZhou, X
dc.contributor.authorNauen, R
dc.contributor.authorBass, C
dc.contributor.authorYang, X
dc.contributor.authorZhang, Y
dc.date.accessioned2024-07-05T12:27:52Z
dc.date.issued2024-07-03
dc.date.updated2024-07-05T11:25:13Z
dc.description.abstractTrade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap “n” collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR–MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.en_GB
dc.description.sponsorshipEuropean Commissionen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipBeijing Natural Science Foundationen_GB
dc.description.sponsorshipChina Agriculture Research Systemen_GB
dc.description.sponsorship2020 Research Program of Sanya Yazhou Bay Science and Technology Cityen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.identifier.citationVol. 121, No. 28, article e2402407121en_GB
dc.identifier.doihttps://doi.org/10.1073/pnas.2402407121
dc.identifier.grantnumber32122073en_GB
dc.identifier.grantnumber32221004en_GB
dc.identifier.grantnumber32202360en_GB
dc.identifier.grantnumber32272598en_GB
dc.identifier.grantnumber6212031en_GB
dc.identifier.grantnumberCARS-24-C-02en_GB
dc.identifier.grantnumberSKJC-2020-02-012en_GB
dc.identifier.grantnumber646625en_GB
dc.identifier.urihttp://hdl.handle.net/10871/136600
dc.identifierORCID: 0000-0002-2590-1492 (Bass, Chris)
dc.language.isoenen_GB
dc.publisherNational Academy of Sciencesen_GB
dc.rights.embargoreasonUnder embargo until 3 January 2025 in compliance with publisher policyen_GB
dc.rights© 2024 National Academy of Sciences. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0en_GB
dc.subjectAdaptive evolutionen_GB
dc.subjectFitness trade-offsen_GB
dc.subjectGPCRen_GB
dc.subjectMAPKen_GB
dc.subjectResistanceen_GB
dc.subjectReproductionen_GB
dc.subjectP450en_GB
dc.titleGPCR–MAPK signaling pathways underpin fitness trade-offs in whiteflyen_GB
dc.typeArticleen_GB
dc.date.available2024-07-05T12:27:52Z
dc.identifier.issn0027-8424
dc.descriptionThis is the author accepted manuscript. The final version is available from the National Academy of Sciences via the DOI in this record en_GB
dc.descriptionData, Materials, and Software Availability: All study data are included in the article and/or SI Appendix.en_GB
dc.identifier.eissn1091-6490
dc.identifier.journalProceedings of the National Academy of Sciencesen_GB
dc.relation.ispartofProceedings of the National Academy of Sciences, 121(28)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2024-05-28
dcterms.dateSubmitted2024-02-03
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-07-03
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-07-05T12:20:17Z
refterms.versionFCDVoR
refterms.panelAen_GB
refterms.dateFirstOnline2024-07-03
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 National Academy of Sciences. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0
Except where otherwise noted, this item's licence is described as © 2024 National Academy of Sciences. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/by-nc-nd/4.0