dc.contributor.author | Zhang, J | |
dc.contributor.author | Luo, C | |
dc.contributor.author | Carpenter, M | |
dc.contributor.author | Min, G | |
dc.date.accessioned | 2024-07-10T10:29:54Z | |
dc.date.issued | 2022-10-25 | |
dc.date.updated | 2024-07-06T14:35:59Z | |
dc.description.abstract | Considering that low-cost and resource-cons- trained sensors coupled inherently could be vulnerable to growing numbers of intrusion threats, industrial Internet-of-Things (IIoT) systems are faced with severe security concerns. Data sharing for building high-performance intrusion detection models is also prohibited due to the sensitivity, privacy, and high value of IIoT data. This article presents an anomaly-based intrusion detection system with federated learning for privacy-preserving machine learning in future IIoT networks. To tackle the urgent issue of training local models with non-independent and identically distributed (non-IID) data, we adopt instance-based transfer learning at local. Furthermore, to boost the performance of this system for IIoT intrusion detection, we propose a rank aggregation algorithm with a weighted voting approach. The proposed system achieves superior detection performance with 95.97% and 73.70% accuracy for AdaBoost and Random Forest, respectively, outperforming the baseline models by 12.72% and 14.8%. | en_GB |
dc.description.sponsorship | China Scholarship Council | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | en_GB |
dc.description.sponsorship | European Union Horizon 2020 | en_GB |
dc.format.extent | 8159-8169 | |
dc.identifier.citation | Vol. 19(7), pp. 8159-8169 | en_GB |
dc.identifier.doi | https://doi.org/10.1109/tii.2022.3216575 | |
dc.identifier.grantnumber | 202008060358 | en_GB |
dc.identifier.grantnumber | 2237757 | en_GB |
dc.identifier.grantnumber | 101008297 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/136650 | |
dc.identifier | ORCID: 0000-0002-9860-2901 (Luo, Chunbo) | |
dc.identifier | ScopusID: 57558289100 (Luo, Chunbo) | |
dc.identifier | ORCID: 0000-0003-1395-7314 (Min, Geyong) | |
dc.language.iso | en | en_GB |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_GB |
dc.rights | © 2022 IEEE | en_GB |
dc.subject | Industrial IoT | en_GB |
dc.subject | Network Intrusion Detection | en_GB |
dc.subject | Federated learning | en_GB |
dc.subject | Transfer learning | en_GB |
dc.title | Federated Learning for Distributed IIoT Intrusion Detection Using Transfer Approaches | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2024-07-10T10:29:54Z | |
dc.identifier.issn | 1551-3203 | |
dc.description | This is the author accepted manuscript. the final version is available from IEEE via the DOI in this record | en_GB |
dc.identifier.eissn | 1941-0050 | |
dc.identifier.journal | IEEE Transactions on Industrial Informatics | en_GB |
dc.relation.ispartof | IEEE Transactions on Industrial Informatics, 19(7) | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2022-10-10 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2022-10-25 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2024-07-10T10:26:55Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2024-07-10T10:31:01Z | |
refterms.panel | B | en_GB |
refterms.dateFirstOnline | 2022-10-25 | |