Show simple item record

dc.contributor.authorZhang, J
dc.contributor.authorLuo, C
dc.contributor.authorCarpenter, M
dc.contributor.authorMin, G
dc.date.accessioned2024-07-10T10:29:54Z
dc.date.issued2022-10-25
dc.date.updated2024-07-06T14:35:59Z
dc.description.abstractConsidering that low-cost and resource-cons- trained sensors coupled inherently could be vulnerable to growing numbers of intrusion threats, industrial Internet-of-Things (IIoT) systems are faced with severe security concerns. Data sharing for building high-performance intrusion detection models is also prohibited due to the sensitivity, privacy, and high value of IIoT data. This article presents an anomaly-based intrusion detection system with federated learning for privacy-preserving machine learning in future IIoT networks. To tackle the urgent issue of training local models with non-independent and identically distributed (non-IID) data, we adopt instance-based transfer learning at local. Furthermore, to boost the performance of this system for IIoT intrusion detection, we propose a rank aggregation algorithm with a weighted voting approach. The proposed system achieves superior detection performance with 95.97% and 73.70% accuracy for AdaBoost and Random Forest, respectively, outperforming the baseline models by 12.72% and 14.8%.en_GB
dc.description.sponsorshipChina Scholarship Councilen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.format.extent8159-8169
dc.identifier.citationVol. 19(7), pp. 8159-8169en_GB
dc.identifier.doihttps://doi.org/10.1109/tii.2022.3216575
dc.identifier.grantnumber202008060358en_GB
dc.identifier.grantnumber2237757en_GB
dc.identifier.grantnumber101008297en_GB
dc.identifier.urihttp://hdl.handle.net/10871/136650
dc.identifierORCID: 0000-0002-9860-2901 (Luo, Chunbo)
dc.identifierScopusID: 57558289100 (Luo, Chunbo)
dc.identifierORCID: 0000-0003-1395-7314 (Min, Geyong)
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2022 IEEEen_GB
dc.subjectIndustrial IoTen_GB
dc.subjectNetwork Intrusion Detectionen_GB
dc.subjectFederated learningen_GB
dc.subjectTransfer learningen_GB
dc.titleFederated Learning for Distributed IIoT Intrusion Detection Using Transfer Approachesen_GB
dc.typeArticleen_GB
dc.date.available2024-07-10T10:29:54Z
dc.identifier.issn1551-3203
dc.descriptionThis is the author accepted manuscript. the final version is available from IEEE via the DOI in this recorden_GB
dc.identifier.eissn1941-0050
dc.identifier.journalIEEE Transactions on Industrial Informaticsen_GB
dc.relation.ispartofIEEE Transactions on Industrial Informatics, 19(7)
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-10-10
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-10-25
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-07-10T10:26:55Z
refterms.versionFCDAM
refterms.dateFOA2024-07-10T10:31:01Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-10-25


Files in this item

This item appears in the following Collection(s)

Show simple item record