Show simple item record

dc.contributor.authorZhang, G
dc.contributor.authorNiwa, K
dc.contributor.authorKleijn, WB
dc.date.accessioned2024-08-29T11:16:27Z
dc.date.issued2023-09-05
dc.date.updated2024-08-29T09:38:19Z
dc.description.abstractWe make contributions towards improving adaptive-optimizer performance. Our improvements are based on suppression of the range of adaptive stepsizes in the AdaBelief optimizer. Firstly, we show that the particular placement of the parameter ϵ within the update expressions of AdaBelief reduces the range of the adaptive stepsizes, making AdaBelief closer to SGD with momentum. Secondly, we extend AdaBelief by further suppressing the range of the adaptive stepsizes. To achieve the above goal, we perform mutual layerwise vector projections between the gradient gt and its first momentum mt before using them to estimate the second momentum. The new optimization method is referred to as Aida. Thirdly, extensive experimental results show that Aida outperforms nine optimizers when training transformers and LSTMs for NLP, and VGG and ResNet for image classification over CIAF10 and CIFAR100 while matching the best performance of the nine methods when training WGAN-GP models for image generation tasks. Furthermore, Aida produces higher validation accuracies than AdaBelief for training ResNet18 over ImageNet. Our implementation is available at https://github.com/guoqiang-zhang-x/Aida-Optimizeren_GB
dc.description.sponsorshipNippon Telegraph and Telephone Corporationen_GB
dc.identifier.urihttp://hdl.handle.net/10871/137281
dc.language.isoenen_GB
dc.publisherJournal of Machine Learning Research Inc.en_GB
dc.relation.urlhttps://jmlr.org/tmlr/papers/en_GB
dc.relation.urlhttps://openreview.net/forum?id=VI2JjIfU37en_GB
dc.relation.urlhttps://github.com/guoqiang-zhang-x/Aida-Optimizeren_GB
dc.rights© 2024. Open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licenceen_GB
dc.titleA DNN Optimizer that Improves over AdaBelief by Suppression of the Adaptive Stepsize Rangeen_GB
dc.typeArticleen_GB
dc.date.available2024-08-29T11:16:27Z
dc.identifier.issn2835-8856
dc.descriptionThis is the final version. Available from Transactions on Machine Learning Research via the link in this recorden_GB
dc.identifier.journalTransactions on Machine Learning Research (TMLR)en_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateSubmitted2023-03-13
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2023-09-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-08-29T09:38:22Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024. Open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence
Except where otherwise noted, this item's licence is described as © 2024. Open access under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence