Show simple item record

dc.contributor.authorHayslep, M
dc.contributor.authorKeedwell, E
dc.contributor.authorFarmani, R
dc.contributor.authorPocock, J
dc.date.accessioned2024-09-13T08:21:38Z
dc.date.issued2024-09-10
dc.date.updated2024-09-12T15:47:32Z
dc.description.abstractThis article introduces an explainable machine learning model for estimating the amount of flow that each pipe in a district metered area (DMA) contributes to the minimum night flow (MNF). This approach is validated using the MNF of DMAs and pipe failures, showing good results for both tasks. The predictions from this model could be used to guide leak management or intervention strategies. In total, 800 DMAs ranging from rural to urban networks and representing nearly 12 million meters of pipe from a UK water company are used to train, validate, test, and evaluate the methodology.en_GB
dc.description.sponsorshipSouth West Water (SWW)en_GB
dc.format.extent112-112
dc.identifier.citationInternational Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry, article 112en_GB
dc.identifier.doihttps://doi.org/10.3390/engproc2024069112
dc.identifier.urihttp://hdl.handle.net/10871/137424
dc.identifierORCID: 0000-0002-0767-0619 (Hayslep, Matthew)
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_GB
dc.subjectmachine learningen_GB
dc.subjectminimum night flowen_GB
dc.subjectwater distribution networken_GB
dc.subjectleakageen_GB
dc.subjectpipe failureen_GB
dc.titleAttributing minimum night flow to individual pipes in real-world water distribution networks using machine learningen_GB
dc.typeConference paperen_GB
dc.date.available2024-09-13T08:21:38Z
dc.identifier.issn2673-4591
dc.descriptionThis is the final version. Available from MDPI via the DOI in this record. en_GB
dc.descriptionData Availability Statement: The datasets presented in this article are not readily available because they are commercially sensitive. Requests to access the datasets should be directed to Joshua Pocock.en_GB
dc.identifier.journalEngineering Proceedingsen_GB
dc.relation.ispartofThe 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 7
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-09-10
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2024-09-13T08:19:31Z
refterms.versionFCDVoR
refterms.dateFOA2024-09-13T08:22:29Z
refterms.panelBen_GB
refterms.dateFirstOnline2024-09-10
pubs.name-of-conferenceInternational Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Except where otherwise noted, this item's licence is described as © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).