Show simple item record

dc.contributor.authorHua, S
dc.contributor.authorShah, SA
dc.contributor.authorNsang, GEO
dc.contributor.authorSayyar, R
dc.contributor.authorUllah, B
dc.contributor.authorUllah, N
dc.contributor.authorKhan, N
dc.contributor.authorYuan, A
dc.contributor.authorBin Mohd Yusoff, AR
dc.contributor.authorUllah, H
dc.date.accessioned2024-10-10T12:06:24Z
dc.date.issued2024-10-03
dc.date.updated2024-10-10T10:57:03Z
dc.description.abstractThe development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm-2, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm-2, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm-2, rivalling the state-of-the-art RuO2/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx2-y2 orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipJiangsu University of Science and Technology, Chinaen_GB
dc.format.extent487-495
dc.identifier.citationVol. 679 (A), pp. 487-495en_GB
dc.identifier.doihttps://doi.org/10.1016/j.jcis.2024.09.219
dc.identifier.grantnumber22150410332en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137655
dc.identifierORCID: 0000-0001-9290-0265 (Ullah, Habib)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/39374558en_GB
dc.rights© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectElectrocatalysten_GB
dc.subjectElectronic propertiesen_GB
dc.subjectFeOOH nanorods@NiOOH nanosheetsen_GB
dc.subjectHeterojunctionen_GB
dc.subjectOverall water splittingen_GB
dc.titleUnveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splittingen_GB
dc.typeArticleen_GB
dc.date.available2024-10-10T12:06:24Z
dc.identifier.issn0021-9797
exeter.place-of-publicationUnited States
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability: Data will be made available on request.en_GB
dc.identifier.eissn1095-7103
dc.identifier.journalJournal of Colloid and Interface Scienceen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-09-27
dcterms.dateSubmitted2024-09-16
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-10-03
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-10-10T12:04:42Z
refterms.versionFCDVoR
refterms.dateFOA2024-10-10T12:06:30Z
refterms.panelBen_GB
exeter.rights-retention-statementYes


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).