Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting
dc.contributor.author | Hua, S | |
dc.contributor.author | Shah, SA | |
dc.contributor.author | Nsang, GEO | |
dc.contributor.author | Sayyar, R | |
dc.contributor.author | Ullah, B | |
dc.contributor.author | Ullah, N | |
dc.contributor.author | Khan, N | |
dc.contributor.author | Yuan, A | |
dc.contributor.author | Bin Mohd Yusoff, AR | |
dc.contributor.author | Ullah, H | |
dc.date.accessioned | 2024-10-10T12:06:24Z | |
dc.date.issued | 2024-10-03 | |
dc.date.updated | 2024-10-10T10:57:03Z | |
dc.description.abstract | The development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm-2, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm-2, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm-2, rivalling the state-of-the-art RuO2/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx2-y2 orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting. | en_GB |
dc.description.sponsorship | National Natural Science Foundation of China | en_GB |
dc.description.sponsorship | Jiangsu University of Science and Technology, China | en_GB |
dc.format.extent | 487-495 | |
dc.identifier.citation | Vol. 679 (A), pp. 487-495 | en_GB |
dc.identifier.doi | https://doi.org/10.1016/j.jcis.2024.09.219 | |
dc.identifier.grantnumber | 22150410332 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/137655 | |
dc.identifier | ORCID: 0000-0001-9290-0265 (Ullah, Habib) | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.relation.url | https://www.ncbi.nlm.nih.gov/pubmed/39374558 | en_GB |
dc.rights | © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en_GB |
dc.subject | Electrocatalyst | en_GB |
dc.subject | Electronic properties | en_GB |
dc.subject | FeOOH nanorods@NiOOH nanosheets | en_GB |
dc.subject | Heterojunction | en_GB |
dc.subject | Overall water splitting | en_GB |
dc.title | Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2024-10-10T12:06:24Z | |
dc.identifier.issn | 0021-9797 | |
exeter.place-of-publication | United States | |
dc.description | This is the final version. Available on open access from Elsevier via the DOI in this record | en_GB |
dc.description | Data availability: Data will be made available on request. | en_GB |
dc.identifier.eissn | 1095-7103 | |
dc.identifier.journal | Journal of Colloid and Interface Science | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2024-09-27 | |
dcterms.dateSubmitted | 2024-09-16 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2024-10-03 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2024-10-10T12:04:42Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2024-10-10T12:06:30Z | |
refterms.panel | B | en_GB |
exeter.rights-retention-statement | Yes |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).