Show simple item record

dc.contributor.authorZhou, R
dc.contributor.authorBacardit, J
dc.contributor.authorBrownlee, AEI
dc.contributor.authorCagnoni, S
dc.contributor.authorFyvie, M
dc.contributor.authorIacca, G
dc.contributor.authorMcCall, J
dc.contributor.authorvan Stein, N
dc.contributor.authorWalker, DJ
dc.contributor.authorHu, T
dc.date.accessioned2024-10-18T08:25:31Z
dc.date.issued2024-10-23
dc.date.updated2024-10-17T16:19:40Z
dc.description.abstractArtificial intelligence methods are being increasingly applied across various domains, but their often opaque nature has raised concerns about accountability and trust. In response, the field of explainable AI (XAI) has emerged to address the need for human-understandable AI systems. Evolutionary computation (EC), a family of powerful optimization and learning algorithms, offers significant potential to contribute to XAI, and vice versa. This paper provides an introduction to XAI and reviews current techniques for explaining machine learning models. We then explore how EC can be leveraged in XAI and examine existing XAI approaches that incorporate EC techniques. Furthermore, we discuss the application of XAI principles within EC itself, investigating how these principles can illuminate the behavior and outcomes of EC algorithms, their (automatic) configuration, and the underlying problem landscapes they optimize. Finally, we discuss open challenges in XAI and highlight opportunities for future research at the intersection of XAI and EC. Our goal is to demonstrate EC’s suitability for addressing current explainability challenges and to encourage further exploration of these methods, ultimately contributing to the development of more understandable and trustworthy ML models and EC algorithms.en_GB
dc.identifier.citationPublished online 23 October 2024en_GB
dc.identifier.doi10.1109/TEVC.2024.3476443
dc.identifier.urihttp://hdl.handle.net/10871/137706
dc.language.isoen_USen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2024 IEEE
dc.subjectExplainabilityen_GB
dc.subjectInterpretabilityen_GB
dc.subjectEvolutionary Computationen_GB
dc.subjectMachine Learningen_GB
dc.titleEvolutionary Computation and Explainable AI: A Roadmap to Understandable Intelligent Systemsen_GB
dc.typeArticleen_GB
dc.date.available2024-10-18T08:25:31Z
dc.identifier.issn1089-778X
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recorden_GB
dc.identifier.eissn1941-0026
dc.identifier.journalIEEE Transactions on Evolutionary Computationen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-10-01
dcterms.dateSubmitted2024-06-11
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-10-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-10-17T16:19:54Z
refterms.versionFCDAM
refterms.dateFOA2024-11-01T14:47:16Z
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record