Show simple item record

dc.contributor.authorZhang, Y
dc.contributor.authorShen, J
dc.contributor.authorYan, Y
dc.contributor.authorTong, J
dc.contributor.authorLincoln, R
dc.contributor.authorZhang, L
dc.contributor.authorLiu, Y
dc.date.accessioned2024-10-24T12:44:43Z
dc.date.issued2024-10-24
dc.date.updated2024-10-24T10:39:54Z
dc.description.abstractVibro-impact capsule robots, propelled by rhythmic collisions of an internal mass triggered by an external magnetic field, are emerging as promising tools for minimally invasive surgery. This innovative actuation mechanism allows for delicate interaction with tissues, making them ideal candidates for navigating confined surgical spaces. However, their limited manoeuvrability and controllability remain significant hurdles, restricting their ability to navigate complex anatomies and perform precise interventions, ultimately hindering their broader clinical applications. This paper investigates the integration of reprogrammable structural springs in capsule robots, demonstrating how dynamic tuning can tailor the interaction between the inner mass and the capsule, thereby unlocking enhanced manoeuvrability and precise control of the capsule robot. A mathematical model describing the dynamic response of a vibro-impact capsule robot integrated with von Mises trusses (VMT), which are used to tailor the interaction between the inner mass and the capsule, is developed and verified using finite element modelling. Using the verified mathematical model, we explore how the transition between mono-stability and bi-stability of VMTs affects the capsule robot’s propelling performance. Our findings demonstrate that this state switch enables four distinct propulsion modes of the capsule robot. This work paves the way for a new paradigm in small-scale robot design by incorporating reprogrammable nonlinear structures. These structures empower the robots with unprecedented manoeuvrability and controllability within a compact, deployable form factor.en_GB
dc.description.sponsorshipMedical Research Council (MRC)en_GB
dc.description.sponsorshipExeter Technologies Group, University of Exeteren_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipSichuan Science and Technology Programen_GB
dc.description.sponsorshipZhejiang Provincial Natural Science Foundationen_GB
dc.format.extent118775-118775
dc.identifier.citationArticle 118775en_GB
dc.identifier.doihttps://doi.org/10.1016/j.jsv.2024.118775
dc.identifier.grantnumberMR/Y503411/1en_GB
dc.identifier.grantnumber12072068en_GB
dc.identifier.grantnumber2022JDRC0018en_GB
dc.identifier.grantnumber2021ZDZX0004en_GB
dc.identifier.grantnumber52108180en_GB
dc.identifier.grantnumberLR24E080002en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137768
dc.identifierORCID: 0000-0003-2763-1147 (Shen, Jiajia)
dc.identifierORCID: 0000-0003-3867-5137 (Liu, Yang)
dc.identifierScopusID: 55199382800 (Liu, Yang)
dc.identifierResearcherID: ABD-4124-2021 | K-1976-2015 (Liu, Yang)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2024 Published by Elsevier Ltd. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/en_GB
dc.subjectWell-behaved nonlinear structuresen_GB
dc.subjectSmall-scale robotsen_GB
dc.subjectMulti-stable structuresen_GB
dc.subjectPhysical intelligenceen_GB
dc.subjectvon Mises trussen_GB
dc.subjectElastic tailoringen_GB
dc.titleExploiting reprogrammable nonlinear structural springs for enhancing the manoeuvrability of a vibro-impact capsule roboten_GB
dc.typeArticleen_GB
dc.date.available2024-10-24T12:44:43Z
dc.identifier.issn0022-460X
exeter.article-number118775
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability: Data will be made available on request.en_GB
dc.identifier.journalJournal of Sound and Vibrationen_GB
dc.relation.ispartofJournal of Sound and Vibration
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-10-14
dcterms.dateSubmitted2024-07-02
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-10-24
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-10-24T12:40:06Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 Published by Elsevier Ltd. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's licence is described as © 2024 Published by Elsevier Ltd. Open access under a Creative Commons licence: https://creativecommons.org/licenses/by/4.0/