Show simple item record

dc.contributor.authorWang, L
dc.contributor.authorXiao, J
dc.contributor.authorMao, Q
dc.contributor.authorCai, C
dc.contributor.authorZhong, Q
dc.contributor.authorLiu, C
dc.contributor.authorLiu, M
dc.date.accessioned2024-10-28T10:39:56Z
dc.date.issued2024-10-24
dc.date.updated2024-10-26T09:44:54Z
dc.description.abstractConstructing efficient electrocatalysts for the oxygen reduction reaction (ORR) is crucial for the commercialization of metal-air batteries. Iron oxide-based catalysts exhibit promising potential for ORR. However, addressing the issue of inferior catalytic performance is essential, and a comprehensive understanding of the catalytic mechanism of iron oxide-based catalysts is also lacking. In this study, we present Fe3O4 nanoparticles encapsulated in N-doped graphitic carbon layers (NGC) hosted by hierarchically porous carbon (Fe3O4@NGC), achieved through a facile dual melt-salt template strategy. The encapsulation of Fe3O4 nanoparticles protects them from corrosion and exfoliation, endowing the catalysts with superior stability. Density functional theory (DFT) calculations discover that the electronic interaction between Fe3O4 nanoparticles and N-doped graphitic carbon layers induces directional interfacial electron transfer, which effectively modulates the surface electronic structure to improve the binding ability to O2, weaken the O=O bond, and optimize the adsorption of intermediates, thus boosting the intrinsic activity. DFT unveils that the C atoms nearest to graphitic-N in NGC are active sites. Finally, the synergistic effects of Fe3O4 nanoparticles and NGC result in outstanding ORR performance and superior stability and methanol tolerance of Fe3O4@NGC, with a half-wave potential of 0.89 V, surpassing that of Pt/C by 50 mV. Fe3O4@NGC also shows better performance than Pt/C when used as the air-electrode catalyst in zinc-air batteryen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipNatural Science Foundation of Hunan Province, Chinaen_GB
dc.description.sponsorshipCentral South University Research Programme of Advanced Interdisciplinary Studiesen_GB
dc.description.sponsorshipCentral South University Innovation-Driven Research Programmeen_GB
dc.description.sponsorshipEducation Department of Hunan Provincial Governmenten_GB
dc.identifier.citationPublished online 24 October 2024en_GB
dc.identifier.doihttps://doi.org/10.1016/j.jcis.2024.10.122
dc.identifier.grantnumber22002189en_GB
dc.identifier.grantnumber22376222en_GB
dc.identifier.grantnumber52174338en_GB
dc.identifier.grantnumber52202125en_GB
dc.identifier.grantnumber52372253en_GB
dc.identifier.grantnumber2022JJ20086en_GB
dc.identifier.grantnumber2021JJ30796en_GB
dc.identifier.grantnumber2023QYJC012en_GB
dc.identifier.grantnumber2023CXQD005en_GB
dc.identifier.grantnumber2023CXQD042en_GB
dc.identifier.grantnumber23B0841en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137797
dc.identifierORCID: 0000-0003-1196-7447 (Liu, Changxu)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 24 October 2025 in compliance with publisher policyen_GB
dc.rights© 2024 Published by Elsevier Inc. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.subjectFe3O4 nanoparticleen_GB
dc.subjectGraphitic carbon layersen_GB
dc.subjectDFT calculationen_GB
dc.subjectDirectional interfacial charge transferen_GB
dc.subjectOxygen reduction reactionen_GB
dc.subjectZinc-air batteryen_GB
dc.titleFe3O4 encapsulated in hierarchically porous nitrogen-doped graphitic carbon layers for efficient oxygen reduction reaction: Enhanced intrinsic activity via directional interfacial charge transferen_GB
dc.typeArticleen_GB
dc.date.available2024-10-28T10:39:56Z
dc.identifier.issn0021-9797
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability: The authors do not have permission to share data.en_GB
dc.identifier.journalJournal of Colloid and Interface Scienceen_GB
dc.relation.ispartofJournal of Colloid and Interface Science
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2024-10-21
dcterms.dateSubmitted2024-07-16
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-10-24
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-10-28T10:34:57Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 Published by Elsevier Inc. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's licence is described as © 2024 Published by Elsevier Inc. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/