HTEKG: A Human-Trait-Enhanced Literary Knowledge Graph with language model evaluation
Kalathil, SS; Li, T; Dong, H; et al.Liang, H
Date: 2024
Conference paper
Publisher
SciTePress
Related links
Abstract
Knowledge Graphs (KGs) are a crucial component of Artificial Intelligence (AI) systems, enhancing AI’s capabilities in literary analysis. However, traditional KG designs in this field have focused more on events, often ignoring character information. To tackle this issue, we created a comprehensive Human-Trait-Enhanced Knowledge Graph, ...
Knowledge Graphs (KGs) are a crucial component of Artificial Intelligence (AI) systems, enhancing AI’s capabilities in literary analysis. However, traditional KG designs in this field have focused more on events, often ignoring character information. To tackle this issue, we created a comprehensive Human-Trait-Enhanced Knowledge Graph, HTEKG, which combines past event-centered KGs with general human traits. The HTEKG enhances query capabilities by mapping the complex relationships and traits of literary characters, thereby providing more accurate and context-relevant information. We tested our HTEKG on three typical literary comprehension methods: traditional Cypher query, integration with a BERT classifier, and integration with GPT-4, demonstrating its effectiveness in literary analysis and its adaptability to different language models.
Computer Science
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0