Show simple item record

dc.contributor.authorZhang, Y
dc.contributor.authorShen, F
dc.contributor.authorLi, R
dc.contributor.authorLi, M
dc.contributor.authorLi, Z
dc.contributor.authorChen, S
dc.contributor.authorSun, X
dc.date.accessioned2024-10-30T16:38:41Z
dc.date.issued2024-10-23
dc.date.updated2024-10-30T16:07:50Z
dc.description.abstractLong time series of spatiotemporally continuous phytoplankton functional type (PFT) data are essential for understanding marine ecosystems and global biogeochemical cycles as well as for effective marine management. In this study, we integrated artificial intelligence (AI) technology with multisource marine big data to develop a spatial–temporal–ecological ensemble model based on deep learning (STEE-DL). This model generated the first AI-driven global daily gap-free 4 km PFT chlorophyll a concentration product from 1998 to 2023 (AIGD-PFT). The AIGD-PFT significantly enhances the accuracy and spatiotemporal coverage of quantifying eight major PFTs: diatoms, dinoflagellates, haptophytes, pelagophytes, cryptophytes, green algae, prokaryotes, and Prochlorococcus. The model input encompasses (1) physical oceanographic, biogeochemical, and spatiotemporal information and (2) ocean colour data (OC-CCI v6.0) that have been gap-filled using a discrete cosine transform–penalized least squares (DCT-PLS) approach. The STEE-DL model utilizes an ensemble strategy with 100 residual neural network (ResNet) models, applying Monte Carlo and bootstrapping methods to estimate the optimal PFT chlorophyll a concentration and assess the model uncertainty through ensemble means and standard deviations. The model's performance was validated using multiple cross-validation strategies – random, spatial-block, and temporal-block methods – combined with in situ data, demonstrating STEE-DL's robustness and generalization capability. The daily updates and seamless nature of the AIGD-PFT data product capture the complex dynamics of coastal regions effectively. Finally, through a comparative analysis using a triple-collocation analysis (TCA) approach, the competitive advantages of the AIGD-PFT data product over existing products were validated.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipScience and Technology Commission of Shanghai Municipalityen_GB
dc.description.sponsorshipAcademic Innovation Promotion Program for Excellent Doctoral Students of East China Normal Universityen_GB
dc.description.sponsorshipUK Research and Innovationen_GB
dc.format.extent4793-4816
dc.identifier.citationVol. 16, No. 10, pp. 4793-4816en_GB
dc.identifier.doihttps://doi.org/10.5194/essd-16-4793-2024
dc.identifier.grantnumber42076187en_GB
dc.identifier.grantnumber42271348en_GB
dc.identifier.grantnumber23590780200en_GB
dc.identifier.grantnumberYBNLTS2024-004en_GB
dc.identifier.grantnumberMR/V022792/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137839
dc.identifierORCID: 0000-0003-4855-6692 (Sun, Xuerong)
dc.language.isoenen_GB
dc.publisherCopernicus Publicationsen_GB
dc.relation.urlhttps://doi.org/10.11888/RemoteSen.tpdc.301164en_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.10910206en_GB
dc.rights© Author(s) 2024. Open access. This work is distributed under the Creative Commons Attribution 4.0 License.en_GB
dc.titleAIGD-PFT: the first AI-driven global daily gap-free 4 km phytoplankton functional type data product from 1998 to 2023en_GB
dc.typeArticleen_GB
dc.date.available2024-10-30T16:38:41Z
dc.identifier.issn1866-3508
dc.descriptionThis is the final version. Available on open access from Copernicus Publications via the DOI in this record. en_GB
dc.descriptionData availability: The AIGD-PFT (1998–2023, daily) dataset is stored in NetCDF format and can be directly accessed via https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024a). In addition, a subset of AIGD-PFT (January 2023) can be downloaded from https://doi.org/10.5281/zenodo.10910206 (Zhang and Shen, 2024b).en_GB
dc.identifier.eissn1866-3516
dc.identifier.journalEarth System Science Dataen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-09-01
dcterms.dateSubmitted2024-04-08
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-10-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-10-30T16:34:38Z
refterms.versionFCDVoR
refterms.dateFOA2024-10-30T16:39:32Z
refterms.panelBen_GB
refterms.dateFirstOnline2024-10-23
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Author(s) 2024. Open access. This work is distributed under
the Creative Commons Attribution 4.0 License.
Except where otherwise noted, this item's licence is described as © Author(s) 2024. Open access. This work is distributed under the Creative Commons Attribution 4.0 License.