Show simple item record

dc.contributor.authorAlanazi, F
dc.contributor.authorMueller, M
dc.contributor.authorTownley, S
dc.date.accessioned2024-11-04T11:18:17Z
dc.date.issued2024-10-30
dc.date.updated2024-11-03T17:11:23Z
dc.description.abstractKuramoto oscillators are known to exhibit multiple synchrony where the states of individual oscillators synchronise in groups. We present a method for output-based classification of synchronised states in networks of Kuramoto oscillators using an artificial neural network for pattern recognition. Outputs of synchronised states are represented by spectrograms, in other words “fingerprint”, on which an artificial neural network of stacked autoencoders is then trained to classify these fingerprints and thus the different types of synchrony. We illustrate the approach for a Kuramoto model with N = 4 oscillators which exhibits synchrony of five types. We provide performance metrics for learning and training data which demonstrat that the approach reaches high levels of reliability.en_GB
dc.format.extent7-12
dc.identifier.citationVol. 58(17), pp. 7-12en_GB
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2024.10.105
dc.identifier.urihttp://hdl.handle.net/10871/137896
dc.identifierORCID: 0000-0001-7489-6397 (Mueller, Markus)
dc.language.isoenen_GB
dc.publisherElsevier / International Federation of Automatic Control (IFAC)en_GB
dc.rights© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_GB
dc.subjectKuramoto Networksen_GB
dc.subjectSynchronyen_GB
dc.subjectObservabilityen_GB
dc.subjectArtificial Neural Networksen_GB
dc.subjectPattern recognitionen_GB
dc.titlePattern recognition tools for output-based classification of synchronised Kuramoto statesen_GB
dc.typeArticleen_GB
dc.date.available2024-11-04T11:18:17Z
dc.identifier.issn2405-8963
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.identifier.journalIFAC-PapersOnLineen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-11-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-04T11:16:38Z
refterms.versionFCDVoR
refterms.dateFOA2024-11-04T11:22:34Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's licence is described as © 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)