Show simple item record

dc.contributor.authorLugan, A
dc.contributor.authorBrückerhoff-Plückelmann, F
dc.contributor.authorPernice, WHP
dc.contributor.authorAggarwal, S
dc.contributor.authorBhaskaran, H
dc.contributor.authorWright, CD
dc.contributor.authorBienstman, P
dc.date.accessioned2024-11-05T14:25:18Z
dc.date.issued2024
dc.date.updated2024-11-04T20:50:08Z
dc.description.abstractPlastic self-adaptation, nonlinear recurrent dynamics and multi-scale memory are desired features in hardware implementations of neural networks, because they enable them to learn, adapt and process information similarly to the way biological brains do. In this work, we experimentally demonstrate these properties occurring in arrays of photonic neurons. Importantly, this is realised autonomously in an emergent fashion, without the need for an external controller setting weights and without explicit feedback of a global reward signal. Using a hierarchy of such arrays coupled to a backpropagationfree training algorithm based on simple logistic regression, we are able to achieve a performance of 98.2% on the MNIST task, a popular benchmark task looking at classification of written digits. The plastic nodes consist of silicon photonics microring resonators covered by a patch of phase-change material that implements nonvolatile memory. The system is compact, robust, and straightforward to scale up through the use of multiple wavelengths. Moreover, it constitutes a unique platform to test and efficiently implement biologically plausible learning schemes at a high processing speed.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipHorizon Europeen_GB
dc.description.sponsorshipFonds voor Wetenschappelijk Onderzoek (FWO)en_GB
dc.description.sponsorshipFund for Scientific Research (FNRS)en_GB
dc.identifier.citationAwaiting citation and DOI.en_GB
dc.identifier.grantnumber780848en_GB
dc.identifier.grantnumber101017237en_GB
dc.identifier.grantnumber101070238en_GB
dc.identifier.grantnumberG006020Nen_GB
dc.identifier.grantnumberG0H1422Nen_GB
dc.identifier.urihttp://hdl.handle.net/10871/137920
dc.identifierORCID: 0000-0003-4087-7467 (Wright, C David)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.rights.embargoreasonUnder temporary indefinite embargo pending publication by Wiley. No embargo required on publicationen_GB
dc.rights© 2024. The Author(s)en_GB
dc.subjectNeuromorphic computingen_GB
dc.subjectMachine learningen_GB
dc.subjectSelf-adapting systemsen_GB
dc.subjectSynaptic plasticityen_GB
dc.subjectSilicon photonicsen_GB
dc.subjectPhase change materialsen_GB
dc.subjectReservoir computingen_GB
dc.titleEmergent Self-Adaption in an Integrated Photonic Neural Network For Backpropagation-Free Learningen_GB
dc.typeArticleen_GB
dc.date.available2024-11-05T14:25:18Z
dc.contributorWright, C
dc.descriptionThis is the author accepted manuscript.en_GB
dc.identifier.eissn2198-3844
dc.identifier.journalAdvanced Scienceen_GB
dc.relation.ispartofAdvanced Science
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-09-20
dcterms.dateSubmitted2024-04-03
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-09-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-04T20:50:10Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record