dc.contributor.author | Lugan, A | |
dc.contributor.author | Brückerhoff-Plückelmann, F | |
dc.contributor.author | Pernice, WHP | |
dc.contributor.author | Aggarwal, S | |
dc.contributor.author | Bhaskaran, H | |
dc.contributor.author | Wright, CD | |
dc.contributor.author | Bienstman, P | |
dc.date.accessioned | 2024-11-05T14:25:18Z | |
dc.date.issued | 2024 | |
dc.date.updated | 2024-11-04T20:50:08Z | |
dc.description.abstract | Plastic self-adaptation, nonlinear recurrent dynamics and multi-scale memory are desired features in
hardware implementations of neural networks, because they enable them to learn, adapt and process
information similarly to the way biological brains do. In this work, we experimentally demonstrate
these properties occurring in arrays of photonic neurons. Importantly, this is realised autonomously in
an emergent fashion, without the need for an external controller setting weights and without explicit
feedback of a global reward signal. Using a hierarchy of such arrays coupled to a backpropagationfree training algorithm based on simple logistic regression, we are able to achieve a performance of
98.2% on the MNIST task, a popular benchmark task looking at classification of written digits. The
plastic nodes consist of silicon photonics microring resonators covered by a patch of phase-change
material that implements nonvolatile memory. The system is compact, robust, and straightforward to
scale up through the use of multiple wavelengths. Moreover, it constitutes a unique platform to test
and efficiently implement biologically plausible learning schemes at a high processing speed. | en_GB |
dc.description.sponsorship | European Union Horizon 2020 | en_GB |
dc.description.sponsorship | Horizon Europe | en_GB |
dc.description.sponsorship | Fonds voor Wetenschappelijk Onderzoek (FWO) | en_GB |
dc.description.sponsorship | Fund for Scientific Research (FNRS) | en_GB |
dc.identifier.citation | Awaiting citation and DOI. | en_GB |
dc.identifier.grantnumber | 780848 | en_GB |
dc.identifier.grantnumber | 101017237 | en_GB |
dc.identifier.grantnumber | 101070238 | en_GB |
dc.identifier.grantnumber | G006020N | en_GB |
dc.identifier.grantnumber | G0H1422N | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/137920 | |
dc.identifier | ORCID: 0000-0003-4087-7467 (Wright, C David) | |
dc.language.iso | en | en_GB |
dc.publisher | Wiley | en_GB |
dc.rights.embargoreason | Under temporary indefinite embargo pending publication by Wiley. No embargo required on publication | en_GB |
dc.rights | © 2024. The Author(s) | en_GB |
dc.subject | Neuromorphic computing | en_GB |
dc.subject | Machine learning | en_GB |
dc.subject | Self-adapting systems | en_GB |
dc.subject | Synaptic plasticity | en_GB |
dc.subject | Silicon photonics | en_GB |
dc.subject | Phase change materials | en_GB |
dc.subject | Reservoir computing | en_GB |
dc.title | Emergent Self-Adaption in an Integrated Photonic Neural Network For Backpropagation-Free Learning | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2024-11-05T14:25:18Z | |
dc.contributor | Wright, C | |
dc.description | This is the author accepted manuscript. | en_GB |
dc.identifier.eissn | 2198-3844 | |
dc.identifier.journal | Advanced Science | en_GB |
dc.relation.ispartof | Advanced Science | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2024-09-20 | |
dcterms.dateSubmitted | 2024-04-03 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2024-09-20 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2024-11-04T20:50:10Z | |
refterms.versionFCD | AM | |
refterms.panel | B | en_GB |
exeter.rights-retention-statement | No | |