Show simple item record

dc.contributor.authorTong, J-Z
dc.contributor.authorChen, Y-L
dc.contributor.authorLi, Q-H
dc.contributor.authorDai, J-B
dc.contributor.authorWang, G-Z
dc.contributor.authorShen, J-J
dc.contributor.authorGao, W
dc.contributor.authorXu, S-L
dc.date.accessioned2024-11-07T10:10:51Z
dc.date.issued2024-11-05
dc.date.updated2024-11-07T08:49:35Z
dc.description.abstractComposite bridge deck (CBD) structure has been widely used in recent decades, particularly in long-span bridges. The application of ultra-high toughness cementitious composite (UHTCC) in composite bridge deck (CBD) structures has garnered attention due to its exceptional resistance to tensile cracking and strain hardening. However, their widespread adoption necessitates a thorough understanding of crack resistance, especially in the presence of wet joints between cast regions. This study investigates the flexural performance and crack width prediction method of steel-UHTCC/concrete CBDs with wet joints using a combined experimental and theoretical approach. Six specimens with UHTCC wet joints and either UHTCC or concrete precast layers were designed and tested under hogging moment. The analysis focused on failure modes, load-deflection responses, and crack development while considering the wet joints. All specimens exhibited interfacial slip between the UHTCC/concrete layer and the steel beam. A novel theoretical model was developed to predict crack width in steel-UHTCC/concrete CBDs with wet joints. This model incorporates established crack theories for fiber-reinforced concrete while explicitly accounting for the strain-hardening behavior of UHTCC. Furthermore, this model provides a detailed bending analysis of steel-UHTCC CBDs considering the interface slip phenomenon, to derive various mechanical parameters for crack width prediction.en_GB
dc.description.sponsorshipNatural Science Foundation of Zhejiang Provinceen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipZJU-USyd Ignition Grantsen_GB
dc.format.extent119264-119264
dc.identifier.citationVol. 323 (A), article 119264en_GB
dc.identifier.doihttps://doi.org/10.1016/j.engstruct.2024.119264
dc.identifier.grantnumberLR24E080002en_GB
dc.identifier.grantnumber52478219en_GB
dc.identifier.grantnumber188170+194452404en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137953
dc.identifierORCID: 0000-0003-2763-1147 (Shen, Jia-Jia)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 5 November 2025 in compliance with publisher policyen_GB
dc.rights© 2024 Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.subjectUltra-high toughness cementitious compositeen_GB
dc.subjectHogging momenten_GB
dc.subjectComposite bridge decken_GB
dc.subjectCrack width predictionen_GB
dc.subjectTheoretical modelen_GB
dc.subjectWet jointen_GB
dc.titleFlexural performance and crack width prediction of steel-UHTCC composite bridge decks with wet jointsen_GB
dc.typeArticleen_GB
dc.date.available2024-11-07T10:10:51Z
dc.identifier.issn0141-0296
exeter.article-number119264
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData availability: Data will be made available on request.en_GB
dc.identifier.journalEngineering Structuresen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2024-10-30
dcterms.dateSubmitted2024-07-05
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-11-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-07T10:06:37Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's licence is described as © 2024 Elsevier Ltd. This version is made available under the CC-BY-NC-ND licence: https://creativecommons.org/licenses/by-nc-nd/4.0/