Show simple item record

dc.contributor.authorAl Hayzea, A
dc.contributor.authorDas, S
dc.contributor.authorTownley, S
dc.date.accessioned2024-11-07T13:31:07Z
dc.date.issued2024-10-30
dc.date.updated2024-11-07T11:37:05Z
dc.description.abstractThis paper considers hybrid ordinary differential equation (ODE) solvers for process dynamics constructed by combining standard numerical schemes with standard observers. Specifically, we combine the first-order Euler scheme with a Luenberger observer. The key ideas are to take advantage of available process output information and to switch from the numerical scheme to the process output-driven observer when the numerical scheme alone would produce inadequate results. Within this setup, two tasks emerge: How to choose the observer gain? How to choose the step size in the numerical scheme? Underpinning our approach is a λ tracking-based sampled-data observer that invokes a λ dead zone. This λ tracking observer determines the observer gain and the numerical step-size adaptively. The resulting adaptive hybrid algorithm is a time-stepping numerical scheme. Using a sampled-data observer allows for process measurements to be only available at some discrete times, whilst adaptive tuning allows the gains and sampling times to adjust automatically to each other – rather than both being subjected to designer's choice. Results are illustrated with examples of simulation.en_GB
dc.format.extent190-195
dc.identifier.citationVol. 58(17), pp. 190-195en_GB
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2024.10.155
dc.identifier.urihttp://hdl.handle.net/10871/137974
dc.identifierORCID: 0000-0002-8394-5303 (Das, Saptarshi)
dc.language.isoenen_GB
dc.publisherElsevier / International Federation of Automatic Control (IFAC)en_GB
dc.rights© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_GB
dc.subjectAdaptive controlen_GB
dc.subjectMinimum-phase systemsen_GB
dc.subjectRobust trackingen_GB
dc.subjectSampled-data controlen_GB
dc.subjectHybrid systemsen_GB
dc.titleHybrid predictor-corrector numerical schemes: λ-tracking, sampled-data observers and data assimilationen_GB
dc.typeArticleen_GB
dc.date.available2024-11-07T13:31:07Z
dc.identifier.issn2405-8963
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.identifier.journalIFAC-PapersOnLineen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-10-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-07T13:24:45Z
refterms.versionFCDVoR
refterms.dateFOA2025-03-07T01:03:45Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's licence is described as © 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)