Does Every Computer Scientist Need to Know Formal Methods?
Broy, M; Brucker, A; Fantechi, A; et al.Gleirscher, M; Havelund, K; Kuppe, MA; Mendes, A; Platzer, A; Ringert, J; Sullivan, A
Date: 10 June 2024
Article
Journal
Formal Aspects of Computing
Publisher
Association for Computing Machinery (ACM)
Publisher DOI
Abstract
We focus on the integration of Formal Methods as mandatory theme in any Computer Science University curriculum. In particular, when considering the ACM Curriculum for Computer Science, the inclusion of Formal Methods as a mandatory Knowledge Area needs arguing for why and how does every computer science graduate benefit from such ...
We focus on the integration of Formal Methods as mandatory theme in any Computer Science University curriculum. In particular, when considering the ACM Curriculum for Computer Science, the inclusion of Formal Methods as a mandatory Knowledge Area needs arguing for why and how does every computer science graduate benefit from such knowledge. We do not agree with the sentence “While there is a belief that formal methods are important and they are growing in importance, we cannot state that every computer science graduate will need to use formal methods in their career.” We argue that formal methods are and have to be an integral part of every computer science curriculum. Just as not all graduates will need to know how to work with databases either, it is still important for students to have a basic understanding of how data is stored and managed efficiently. The same way, students have to understand why and how methods work, what their formal background is, and how they are justified. No engineer should be ignorant of the foundations of their subject and the formal methods based on these.
In this paper, we aim to highlight why every computer scientist needs to be familiar with formal methods. We argue that education in formal methods plays a key role by shaping students' programming mindset, fostering an appreciation for underlying principles, and encouraging the practice of thoughtful program design and justification, rather than simply writing programs without reflection and deeper understanding. Since integrating formal methods into the computer science curriculum is not a straightforward process, we explore the additional question: what are the trade-offs between one dedicated knowledge area of formal methods in a computer science curriculum versus having formal methods scattered across all knowledge areas? Solving problems while designing software and software-intensive systems demands an understanding of what is required, followed by a specification and formalizing a solution in a programming language. How to do this systematically and correctly on solid grounds is exactly the supported by Formal Methods.
Computer Science
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0
Except where otherwise noted, this item's licence is described as © 2024 Copyright held by the owner/author(s). Open access. This work is licensed under a Creative Commons Attribution International 4.0 License.