Show simple item record

dc.contributor.authorLi, X
dc.contributor.authorCao, J
dc.contributor.authorChen, J
dc.contributor.authorXie, J
dc.contributor.authorGu, C
dc.contributor.authorLi, X
dc.contributor.authorBrandon, N
dc.contributor.authorHu, W
dc.date.accessioned2024-11-18T11:14:45Z
dc.date.issued2024-11-15
dc.date.updated2024-11-17T19:36:49Z
dc.description.abstractThe combination of different elements in alloy catalysts can lead to improved activity as it provides opportunities to tune the electronic structures of surface atoms. However, the synthesis and performance screening of alloy catalysts through a vast chemical space are cost- and labor-intensive. Herein, a UV-induced, high-throughput method is reported for the synthesis and screening of alloy electrocatalysts in a fast and low-cost manner. A platform that integrates 37 mini-reaction-cells enables simultaneous UV-induced photodeposition of alloy nanoparticles with up to 37 compositions. These mini-reaction-cells further allow a transfer-free, high-throughput electrochemical performance screening. Binary (PtPd, PtIr, PdIr), ternary (PtPdIr, PtRuIr) and quaternary (PtPdRuIr) alloys have been synthesized with the activity of the binary alloys (57 compositions) for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) being screened. The predicted high performance of identified alloy compositions are subsequently validated by standard measurements using a rotating disk electrode configuration. It is found that the as-synthesized alloy nanoparticles are rich in twin boundaries and thus possess lattice strain. Density functional theory calculation implies that the high ORR activity of the screened Pt0.75Pd0.25 alloy originates from the interplay between the differentiated adsorption sites because of alloying and the strain-induced modulation of the d-band center.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipYunnan Fundamental Research Projectsen_GB
dc.identifier.citationPublished online 15 November 2024.en_GB
dc.identifier.doihttps://doi.org/10.1002/smll.202406848
dc.identifier.grantnumber52262005en_GB
dc.identifier.grantnumber202301AT070122en_GB
dc.identifier.urihttp://hdl.handle.net/10871/138653
dc.identifierORCID: 0000-0003-4450-4617 (Li, Xiaohong)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.rights.embargoreasonUnder embargo until 15 November 2025 in compliance with publisher policy.en_GB
dc.rights© 2024 Wiley-VCH GmbH.en_GB
dc.subjectHigh-throughputen_GB
dc.subjectHydrogen evolution reactionen_GB
dc.subjectNoble metal alloyen_GB
dc.subjectOxygen reduction reactionen_GB
dc.subjectPhotodepositionen_GB
dc.titleHigh‐Throughput UV‐Induced Synthesis and Screening of Alloy Electrocatalystsen_GB
dc.typeArticleen_GB
dc.date.available2024-11-18T11:14:45Z
dc.identifier.issn1613-6810
dc.descriptionThis is the author accepted manuscript.en_GB
dc.descriptionData Availability Statement. The data that support the findings of this study are available from the corresponding author upon reasonable request.en_GB
dc.identifier.eissn1613-6829
dc.identifier.journalSmallen_GB
dc.relation.ispartofSmall
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-11-15
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-18T10:51:27Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2024-11-15
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record