Show simple item record

dc.contributor.authorZhang, Y
dc.contributor.authorHu, J
dc.contributor.authorMin, G
dc.contributor.authorChen, X
dc.date.accessioned2025-01-03T10:35:51Z
dc.date.issued2024-10-28
dc.date.updated2025-01-02T16:03:15Z
dc.description.abstractDistributed microgrids are being deployed into our power grids to form large-scale multimicrogrid systems for utilizing growing renewable energy sources. An effective energy management strategy is fundamental to balancing energy supply and demand alongside maintaining the stability of multimicrogrid. In this article, we propose a scalable, privacy-preserving, distributed energy management approach (SPDEM) for multimicrogrid. Specifically, we first formulate the energy management problem in multimicrogrid as a decentralized partially observable Markov decision process (Dec-POMDP). Next, we develop an intelligent energy management algorithm using mean-field multiagent recurrent reinforcement learning to efficiently solve the Dec-POMDP. This approach incorporates a novel fingerprint-based importance sampling technique to address the obsolete experiences induced by mean field approximation. Extensive experiments on real-world datasets demonstrate that SPDEM can make effective energy management decisions under variable renewable energy generation and load demand. Comparisons with five typical baselines illustrate the superb performance of SPDEM in cost reduction and scalability enhancement.en_GB
dc.description.sponsorshipUK Research and Innovationen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.identifier.citationPublished online 28 October 2024en_GB
dc.identifier.doihttps://doi.org/10.1109/tii.2024.3478268
dc.identifier.grantnumberEP/X038866/1en_GB
dc.identifier.grantnumber101086159en_GB
dc.identifier.urihttp://hdl.handle.net/10871/139474
dc.identifierORCID: 0000-0001-5406-8420 (Hu, Jia)
dc.identifierORCID: 0000-0003-1395-7314 (Min, Geyong)
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2024 the author(s). For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.en_GB
dc.subjectMicrogridsen_GB
dc.subjectEnergy managementen_GB
dc.subjectRenewable energy sourcesen_GB
dc.subjectElectricityen_GB
dc.subjectUncertaintyen_GB
dc.subjectTrainingen_GB
dc.subjectScalabilityen_GB
dc.subjectReactive poweren_GB
dc.subjectPrivacyen_GB
dc.subjectPower system stabilityen_GB
dc.titleScalable and privacy-preserving distributed energy management for multimicrogriden_GB
dc.typeArticleen_GB
dc.date.available2025-01-03T10:35:51Z
dc.identifier.issn1551-3203
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this record en_GB
dc.identifier.eissn1941-0050
dc.identifier.journalIEEE Transactions on Industrial Informaticsen_GB
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-10-05
dcterms.dateSubmitted2024-02-29
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-10-28
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2025-01-03T10:17:31Z
refterms.versionFCDAM
refterms.dateFOA2025-01-03T10:39:48Z
refterms.panelBen_GB
refterms.dateFirstOnline2024-10-28
exeter.rights-retention-statementYes


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 the author(s). For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.
Except where otherwise noted, this item's licence is described as © 2024 the author(s). For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.