Show simple item record

dc.contributor.authorDong, S
dc.contributor.authorDas, S
dc.contributor.authorThornton, A
dc.contributor.authorTownley, S
dc.date.accessioned2025-01-17T10:47:52Z
dc.date.issued2025-01-09
dc.date.updated2025-01-16T20:08:18Z
dc.description.abstractThis study proposes integrating Genetic Algorithms (GAs) into control systems to enhance autonomy, particularly for unmanned aerial vehicle (UAV) operations. Traditional control systems, which rely on expert knowledge and complex mathematical calculations, limit autonomy. In contrast, GAs offer robust global search capabilities, helping to avoid local optima and enhancing computational efficiency through parallel processing. Utilizing a modified Nonlinear Auto-Regressive eXogenous (NARX) model with feedback regulation ensures system stability and accurate tracking of target values, allowing the system to learn dynamic relationships essential for control in complex nonlinear conditions. We introduce a new GA-NARX based autonomous UAV control system designed for exploration in unfamiliar environments. Our enhanced system features a self-optimizing control mechanism that enables global optimization for peak performance. This advanced control system minimizes human-machine interaction by leveraging GAs' predictive abilities to anticipate future states while significantly improving the control precision. Overall, the design of this autonomous control system aims to optimize coordination and control strategies for UAV swarms, offering innovative solutions for efficient flight patterns.en_GB
dc.format.extent454-459
dc.identifier.citation2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV), 12 - 15 December 2024, Dubai, United Arab Emirates, pp. 454-459en_GB
dc.identifier.doihttps://doi.org/10.1109/icarcv63323.2024.10821665
dc.identifier.urihttp://hdl.handle.net/10871/139675
dc.identifierORCID: 0000-0002-8394-5303 (Das, Saptarshi)
dc.identifierScopusID: 57193720393 (Das, Saptarshi)
dc.identifierResearcherID: D-5518-2012 (Das, Saptarshi)
dc.language.isoen_USen_GB
dc.publisherInstitute of Electrical and Electronics Engineersen_GB
dc.rights.embargoreasonUnder embargo until 15 December 2026 in compliance with publisher policyen_GB
dc.rights© 2024, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_GB
dc.subjectTarget trackingen_GB
dc.subjectRobot kinematicsen_GB
dc.subjectParallel processingen_GB
dc.subjectControl systemsen_GB
dc.subjectAutonomous aerial vehiclesen_GB
dc.subjectPrediction algorithmsen_GB
dc.subjectStability analysisen_GB
dc.subjectRegulationen_GB
dc.subjectVehicle dynamicsen_GB
dc.subjectGenetic algorithmsen_GB
dc.titleControl system autonomy improvement: An attempt to introduce meta-heuristic algorithms into closed-loop UAV control systemsen_GB
dc.typeConference paperen_GB
dc.date.available2025-01-17T10:47:52Z
dc.descriptionThis is the author accepted manuscript. The final version is available from the Institute of Electrical and Electronics Engineers via the DOI in this record en_GB
dc.identifier.eissn2474-963X
dc.relation.ispartof2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV), 00
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-12-15
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-12-15
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2025-01-17T10:39:51Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2025-01-09
pubs.name-of-conference2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV)
exeter.rights-retention-statementNo


Files in this item

This item appears in the following Collection(s)

Show simple item record