Show simple item record

dc.contributor.authorAl Garea, S
dc.contributor.authorDas, S
dc.contributor.authorCallaway, M
dc.date.accessioned2025-02-25T10:25:52Z
dc.date.issued2025-02-17
dc.date.updated2025-02-24T17:25:18Z
dc.description.abstractEffective and quick response to natural disasters is crucial to save lives and reduce sufferings. Flooding is an annual concern in many countries with heavy rainfall, and monitoring systems are limited due to lack of data during flood events. Technological developments have increased interest in using computer vision techniques for automatic flood monitoring. One such technique, image segmentation, divides an image into multiple regions to extract the objects of interest. Methods include techniques such as thresholding, clustering, graph-based, superpixels, and watersheds. Here, we use a flood area segmentation dataset, comprising images of areas affected by floods and water region masks. The images, originally in the RGB format, are converted into L∗a∗b∗, HSV, and YCbCr colour spaces. We then apply a clustering method to extract flooding areas from 243 images within all four colour spaces and use Jaccard, Dice, and BF-score metrics to compare through k-means++ clustering. Finally, we applied the basic non-parametric bootstrap method to estimate the mean and its confidence interval for each metric result. This paper evaluates which colour space is more effective in segmenting flood areas using clustering based segmentation.en_GB
dc.description.sponsorshipNajran Universityen_GB
dc.description.sponsorshipSaudi Arabia Cultural Bureau, UKen_GB
dc.format.extent337-343
dc.identifier.citation2024 IEEE International Conference on Future Machine Learning and Data Science (FMLDS), Sydney, Australia, 20 - 23 November 2024, pp. 337-343en_GB
dc.identifier.doihttps://doi.org/10.1109/fmlds63805.2024.00067
dc.identifier.urihttp://hdl.handle.net/10871/140253
dc.identifierORCID: 0000-0002-8394-5303 (Das, Saptarshi)
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2025 IEEEen_GB
dc.subjectNatural hazardsen_GB
dc.subjectfloodsen_GB
dc.subjectimage segmentationen_GB
dc.subjectk-means clusteringen_GB
dc.subjectresampling statisticsen_GB
dc.subjectperformance metricsen_GB
dc.titleClustering Based Flood Area Segmentation Benchmarking in Different Colour Spacesen_GB
dc.typeConference paperen_GB
dc.date.available2025-02-25T10:25:52Z
dc.identifier.isbn979-8-3503-9121-3
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recorden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2025-02-17
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2025-02-25T10:14:28Z
refterms.versionFCDAM
refterms.dateFOA2025-03-07T01:09:33Z
refterms.panelBen_GB
pubs.name-of-conference2024 IEEE International Conference on Future Machine Learning and Data Science (FMLDS)


Files in this item

This item appears in the following Collection(s)

Show simple item record