The Development of Lightweight Cellular Structures for Metal Additive Manufacturing
Hussein, Ahmed Yussuf
Date: 11 November 2013
Publisher
University of Exeter
Degree Title
PhD in Engineering
Abstract
Metal Additive Manufacturing (AM) technologies in particular powder bed fusion processes such as Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are capable of producing a fully-dense metal components directly from computer-aided design (CAD) model without the need of tooling. This unique capability offered by ...
Metal Additive Manufacturing (AM) technologies in particular powder bed fusion processes such as Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are capable of producing a fully-dense metal components directly from computer-aided design (CAD) model without the need of tooling. This unique capability offered by metal AM has allowed the manufacture of inter-connected lattice structures from metallic materials for different applications including, medical implants and aerospace lightweight components. Despite the many promising design freedoms, metal AM still faces some major technical and design barriers in building complex structures with overhang geometries. Any overhang geometry which exceeds the minimum allowable build angle must be supported. The function of support structure is to prevent the newly melted layer from curling due to thermal stresses by anchoring it in place. External support structures are usually removed from the part after the build; however, internal support structures are difficult or impossible to remove.
These limitations are in contrast to what is perceived by designers as metal AM being able to generate all conceivable geometries. Because support structures consume expensive raw materials, use a considerable amount of laser consolidation energy, there is considerable interest in design optimisation of support structure to minimize the build time, energy, and material consumption. Similarly there is growing demand of developing more advanced and lightweight cellular structures which are self-supporting and manufacturable in wider range of cell sizes and volume fractions using metal AM.
The main focuses of this research is to tackle the process limitation in metal AM and promote design freedom through advanced self-supporting and low-density Triply Periodic Minimal Surface (TPMS) cellular structures. Low density uniform, and graded, cellular structures have been developed for metal AM processes. This work presents comprehensive experimental test conducted in SLM and DMLS processes using different TPMS cell topologies and materials. This research has contributed to new knowledge in understanding the manufacturability and mechanical behaviour of TPMS cellular structures with varying cell sizes, orientations and volume fractions. The new support structure method will address the saving of material (via low volume cellular structures and easy removal of powder) and saving of energy (via reduced build-time).
Doctoral Theses
Doctoral College
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
Implications of structural design on the effectiveness of active vibration control of floor structures
Hudson, EJ; Reynolds, P (Wiley for European Association for the Control of Structures and International Association for Structural Control and Monitoring, 2 September 2013)Active vibration control has shown great potential for reducing the response of floor structures and has the potential to realise significant material savings in slender designs through incorporation from the conceptual ... -
Electronic structure, structural and optical properties of thermally evaporated CdTe thin films
Lalitha, S.; Karazhanov, S.Z.; Ravindran, P.; et al. (Elsevier, 6 June 2006)Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements itis found that the films are of zinc-blende-type structure. Transmittance, absorption, extinction, and refractive ... -
Vibration Serviceability of Pedestrian Structures in Vertical Direction including Human-structure Interaction: New Statistical Framework for Assessment
Shahabpoor, E; Pavic, A; Racic, V (Elsevier, 20 January 2017)Predicting the effect of walking traffic on structural vibrations is a great challenge to designers of pedestrian structures, such as footbridges and floors. This is mainly due to the lack of adequate design guidelines, ...