Show simple item record

dc.contributor.authorKucukkoc, Ibrahim
dc.contributor.authorKaraoglan, Aslan Deniz
dc.contributor.authorYaman, Ramazan
dc.date.accessioned2014-08-26T14:41:35Z
dc.date.issued2013-06-09
dc.description.abstractGenetic algorithms are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP hard problems. This algorithm includes a number of parameters whose different levels affect the performance of the algorithm strictly. The general approach to determine the appropriate parameter combination of genetic algorithm depends on too many trials of different combinations and the best one of the combinations that produces good results is selected for the program that would be used for problem solving. A few researchers studied on parameter optimisation of genetic algorithm. In this paper, response surface depended parameter optimisation is proposed to determine the optimal parameters of genetic algorithm. Results are tested for benchmark problems that is most common in mixed-model assembly line balancing problems of type-I (MMALBP-I).en_GB
dc.identifier.citationVol. 51 (17), pp. 5039-5054en_GB
dc.identifier.doi10.1080/00207543.2013.784411
dc.identifier.urihttp://hdl.handle.net/10871/15380
dc.language.isoenen_GB
dc.publisherTaylor & Francisen_GB
dc.subjectGenetic algorithm (GA)en_GB
dc.subjectResponse surface methodology (RSM)en_GB
dc.subjectAssembly line balancingen_GB
dc.subjectParameter optimisationen_GB
dc.subjectDesign of experimenten_GB
dc.titleUsing response surface design to determine the optimal parameters of genetic algorithm and a case studyen_GB
dc.typeArticleen_GB
dc.date.available2014-08-26T14:41:35Z
dc.identifier.issn0020-7543
dc.descriptionCopyright © 2013 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 09 June 2013, available online: http://www.tandfonline.com/10.1080/00207543.2013.784411en_GB
dc.identifier.eissn1366-588X
dc.identifier.journalInternational Journal of Production Researchen_GB
refterms.dateFOA2018-12-05T10:34:10Z


Files in this item

This item appears in the following Collection(s)

Show simple item record