The Analysis and Application of Artificial Neural Networks for Early Warning Systems in Hydrology and the Environment
Duncan, Andrew Paul
Date: 17 September 2014
Publisher
University of Exeter
Degree Title
PhD in Computer Science
Related links
Abstract
Artificial Neural Networks (ANNs) have been comprehensively researched, both from a computer scientific perspective and with regard to their use for predictive modelling in a wide variety of applications including hydrology and the environment. Yet their adoption for live, real-time systems remains on the whole sporadic and experimental. ...
Artificial Neural Networks (ANNs) have been comprehensively researched, both from a computer scientific perspective and with regard to their use for predictive modelling in a wide variety of applications including hydrology and the environment. Yet their adoption for live, real-time systems remains on the whole sporadic and experimental. A plausible hypothesis is that this may be at least in part due to their treatment heretofore as “black boxes” that implicitly contain something that is unknown, or even unknowable. It is understandable that many of those responsible for delivering Early Warning Systems (EWS) might not wish to take the risk of implementing solutions perceived as containing unknown elements, despite the computational advantages that ANNs offer.
This thesis therefore builds on existing efforts to open the box and develop tools and techniques that visualise, analyse and use ANN weights and biases especially from the viewpoint of neural pathways from inputs to outputs of feedforward networks. In so doing, it aims to demonstrate novel approaches to self-improving predictive model construction for both regression and classification problems. This includes Neural Pathway Strength Feature Selection (NPSFS), which uses ensembles of ANNs trained on differing subsets of data and analysis of the learnt weights to infer degrees of relevance of the input features and so build simplified models with reduced input feature sets.
Case studies are carried out for prediction of flooding at multiple nodes in urban drainage networks located in three urban catchments in the UK, which demonstrate rapid, accurate prediction of flooding both for regression and classification. Predictive skill is shown to reduce beyond the time of concentration of each sewer node, when actual rainfall is used as input to the models.
Further case studies model and predict statutory bacteria count exceedances for bathing water quality compliance at 5 beaches in Southwest England. An illustrative case study using a forest fires dataset from the UCI machine learning repository is also included. Results from these model ensembles generally exhibit improved performance, when compared with single ANN models. Also ensembles with reduced input feature sets, using NPSFS, demonstrate as good or improved performance when compared with the full feature set models.
Conclusions are drawn about a new set of tools and techniques, including NPSFS and visualisation techniques for inspection of ANN weights, the adoption of which it is hoped may lead to improved confidence in the use of ANN for live real-time EWS applications.
Doctoral Theses
Doctoral College
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
Pareto Evolutionary Neural Networks
Fieldsend, Jonathan E.; Singh, Sameer (Institute of Electrical and Electronics Engineers (IEEE), 7 March 2005)For the purposes of forecasting (or classification) tasks neural networks (NNs) are typically trained with respect to Euclidean distance minimization. This is commonly the case irrespective of any other end user preferences. ... -
Artificial Development of Neural-Symbolic Networks
Townsend, Joseph Paul (University of Exeter College of Engineering, Mathematics and Physical Sciences, 24 March 2014)Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resistant, the information they represent is distributed ... -
Reactive Control of a Wave Energy Converter using Artificial Neural Networks
Anderlini, E; Forehand, DIM; Bannon, E; et al. (Elsevier, 12 August 2017)A model-free algorithm is developed for the reactive control of a wave energy converter. Artificial neural networks are used to map the significant wave height, wave energy period, and the power take-off damping and stiffness ...