Show simple item record

dc.contributor.authorAlqus, Rasha
dc.contributor.authorEichhorn, Stephen J.
dc.contributor.authorBryce, Richard A.
dc.date.accessioned2015-06-16T14:46:18Z
dc.date.issued2015-05-27
dc.description.abstractMolecular dynamics (MD) simulations have been applied to study the interactions between hydrophobic and hydrophilic faces of ordered cellulose chains and a single layer of graphene in explicit aqueous solvent. The hydrophobic cellulose face is predicted to form a stable complex with graphene. This interface remains solvent-excluded over the course of simulations; the cellulose chains contacting graphene in general preserve intra- and interchain hydrogen bonds and a tg orientation of hydroxymethyl groups. Greater flexibility is observed in the more solvent-exposed cellulose chains of the complex. By contrast, the hydrophilic face of cellulose exhibits progressive rearrangement over the course of MD simulations, as it seeks to present its hydrophobic face, with disrupted intra- and interchain hydrogen bonding; residue twisting to form CH-π interactions with graphene; and partial permeation of water. This transition is also accompanied by a more favorable cellulose-graphene adhesion energy as predicted at the PM6-DH2 level of theory. The stability of the cellulose-graphene hydrophobic interface in water exemplifies the amphiphilicity of cellulose and provides insight into favored interactions within graphene-cellulose materials. Furthermore, partial permeation of water between exterior cellulose chains may indicate potential in addressing cellulose recalcitrance.en_GB
dc.identifier.citationVol. 16 (6), pp 1771–1783en_GB
dc.identifier.doi10.1021/acs.biomac.5b00307
dc.identifier.urihttp://hdl.handle.net/10871/17573
dc.language.isoenen_GB
dc.publisherAmerican Chemical Societyen_GB
dc.relation.urlhttp://dx.doi.org/10.1021/acs.biomac.5b00307en_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26015270en_GB
dc.rights.embargoreasonPublisher policyen_GB
dc.subjectCelluloseen_GB
dc.subjectGrapheneen_GB
dc.subjectHydrophobicen_GB
dc.subjectHydrophilicen_GB
dc.subjectAmphiphilicen_GB
dc.subjectMolecular Dynamicsen_GB
dc.titleMolecular Dynamics of Cellulose Amphiphilicity at the Graphene-Water Interfaceen_GB
dc.typeArticleen_GB
dc.identifier.issn1525-7797
pubs.declined2015-06-10T11:39:46.25+0100
dc.descriptionThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © 2015 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see 10.1021/acs.biomac.5b00307en_GB
dc.identifier.eissn1526-4602
dc.identifier.journalBiomacromoleculesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record