Show simple item record

dc.contributor.authorMicheli, Leonardo
dc.contributor.authorSarmah, Nabin
dc.contributor.authorReddy, K.S.
dc.contributor.authorLuo, X
dc.contributor.authorMallick, Tapas K.
dc.date.accessioned2015-07-30T13:41:48Z
dc.date.issued2015-08-20
dc.description.abstractThe paper presents a novel densely packed assembly for high concentrating photovoltaic applications, designed to fit a 125× primary and a 4× secondary reflective optics. This assembly can accommodate 144 multi-junction cells and is one of the most populated modules presented so far. Based on the thermal simulation results, an aluminum-based Insulated Metal Substrate has been used as baseplate: this technology is commonly exploited for Light Emitting Diode applications, due to its optimal thermal management. The original outline of the conductive copper layer has been developed to minimize Joule losses by reducing the number of interconnections among the cells in series. Oversized Schottky diodes have been employed for bypassing purposes. The whole design fits the IPC-2221 requirements. The plate has been manufactured using standard electronic processes and then characterized through an indoor test and the results are here presented and commented. The assembly achieves a fill factor above 80% and an efficiency of 29.4% at 500×, less than 2% lower than that of a single cell commercial receiver. The novel design of the conductive pattern is conceived to decrease the power losses and the deployment of an insulated metal substrate represents an improvement towards the awaited cost-cutting for high concentrating photovoltaic technologies.en_GB
dc.description.sponsorshipEPSRC-DSTen_GB
dc.identifier.citationVol. 2015, article 341032en_GB
dc.identifier.doi10.1155/2015/341032
dc.identifier.grantnumberEP/J000345/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/17986
dc.language.isoenen_GB
dc.publisherHindawi Publishing Corporationen_GB
dc.rightsCopyright © 2015 Leonardo Micheli et al. This is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.titleDesign, Development and Analysis of a Densely Packed 500× Concentrating Photovoltaic Cell Assembly on Insulated Metal Substrateen_GB
dc.typeArticleen_GB
dc.identifier.issn1687-529X
dc.identifier.journalInternational Journal of Photoenergyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record