Show simple item record

dc.contributor.authorSmoktunowicz, N
dc.contributor.authorAlexander, RE
dc.contributor.authorFranklin, L
dc.contributor.authorWilliams, AE
dc.contributor.authorHolman, B
dc.contributor.authorMercer, PF
dc.contributor.authorJarai, G
dc.contributor.authorScotton, CJ
dc.contributor.authorChambers, RC
dc.date.accessioned2015-10-09T11:26:55Z
dc.date.issued2015-09-01
dc.description.abstractTGFβ-ALK5 pro-fibrotic signalling and herpesvirus infections have been implicated in the pathogenesis and exacerbation of pulmonary fibrosis. In this study we addressed the role of TGFβ-ALK5 signalling during the progression of fibrosis in a two-hit mouse model of murine γ-herpesvirus 68 (MHV-68) infection on the background of pre-existing bleomycin-induced pulmonary fibrosis. Assessment of total lung collagen levels in combination with ex vivo micro-computed tomography (µCT) analysis of whole lungs demonstrated that MHV-68 infection did not enhance lung collagen deposition in this two-hit model but led to a persistent and exacerbated inflammatory response. Moreover, µCT reconstruction and analysis of the two-hit model revealed distinguishing features of diffuse ground-glass opacities and consolidation superimposed on pre-existing fibrosis that were reminiscent of those observed in acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). Virally-infected murine fibrotic lungs further displayed evidence of extensive inflammatory cell infiltration and increased levels of CCL2, TNFα, IL-1β and IL-10. Blockade of TGFβ-ALK5 signalling attenuated lung collagen accumulation in bleomycin-alone injured mice, but this anti-fibrotic effect was reduced in the presence of concomitant viral infection. In contrast, inhibition of TGFβ-ALK5 signalling in virally-infected fibrotic lungs was associated with reduced inflammatory cell aggregates and increased levels of the antiviral cytokine IFNγ. These data reveal newly identified intricacies for the TGFβ-ALK5 signalling axis in experimental lung fibrosis, with different outcomes in response to ALK5 inhibition depending on the presence of viral infection. These findings raise important considerations for the targeting of TGFβ signalling responses in the context of pulmonary fibrosis.en_GB
dc.description.sponsorshipMRCen_GB
dc.description.sponsorshipNovartis CASE studentshipen_GB
dc.identifier.citationVol. 8, pp. 1129 - 1139en_GB
dc.identifier.doi10.1242/dmm.019984
dc.identifier.grantnumberG0200265en_GB
dc.identifier.grantnumberG0800340en_GB
dc.identifier.otherdmm.019984
dc.identifier.urihttp://hdl.handle.net/10871/18410
dc.language.isoenen_GB
dc.publisherCompany of Biologistsen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26138704en_GB
dc.relation.urlhttp://dmm.biologists.org/content/8/9/1129en_GB
dc.rightsCopyright © 2015. Published by The Company of Biologists Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.en_GB
dc.subjectCollagenen_GB
dc.subjectPulmonary fibrosisen_GB
dc.subjectTGFβen_GB
dc.subjectViral infectionen_GB
dc.subjectµCTen_GB
dc.titleThe anti-fibrotic effect of inhibition of TGFβ-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent γ-herpesvirus infection.en_GB
dc.typeArticleen_GB
dc.date.available2015-10-09T11:26:55Z
dc.identifier.issn1754-8403
exeter.place-of-publicationEngland
dc.descriptionJournal Articleen_GB
dc.identifier.journalDisease Models and Mechanismsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record