Show simple item record

dc.contributor.authorBohn, TJ
dc.contributor.authorMelton, JR
dc.contributor.authorIto, A
dc.contributor.authorKleinen, T
dc.contributor.authorSpahni, R
dc.contributor.authorStocker, BD
dc.contributor.authorZhang, B
dc.contributor.authorZhu, X
dc.contributor.authorSchroeder, R
dc.contributor.authorGlagolev, MV
dc.contributor.authorMaksyutov, S
dc.contributor.authorBrovkin, Victor
dc.contributor.authorChen, G
dc.contributor.authorDenisov, SN
dc.contributor.authorEliseev, SN
dc.contributor.authorGallego-Sala, Angela V.
dc.contributor.authorMcDonald, KC
dc.contributor.authorRawlins, MA
dc.contributor.authorRiley, WJ
dc.contributor.authorSubin, ZM
dc.contributor.authorTian, H
dc.contributor.authorZhuang, Q
dc.contributor.authorKaplan, JO
dc.date.accessioned2015-12-15T14:24:21Z
dc.date.issued2015-06-03
dc.description.abstractWetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yrg'1), inversions (6.06 ± 1.22 Tg CH4 yrg'1), and in situ observations (3.91 ± 1.29 Tg CH4 yrg'1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change.en_GB
dc.description.sponsorshipCOST Action TERRABITESen_GB
dc.description.sponsorshipNASAen_GB
dc.description.sponsorshipUS National Science Foundation (NSF) Science, Engineering and Education for Sustainability (SEES) Post-Doctoral Fellowship programen_GB
dc.description.sponsorshipNational Science and Engineering Research Council of Canada (NSERC) - visiting Post-Doctoral Fellowship.en_GB
dc.description.sponsorshipGerman Ministry of Education and Research - CarboPerm-Projecten_GB
dc.description.sponsorshipSwiss National Science Foundationen_GB
dc.description.sponsorshipEuropean Commission FP7 project Past4Futureen_GB
dc.description.sponsorshipERC FP7 project EMBRACEen_GB
dc.description.sponsorshipUS National Science Foundationen_GB
dc.description.sponsorshipUS Department of Energyen_GB
dc.description.sponsorshipTomsk State University Competitiveness Improvement Programen_GB
dc.description.sponsorshipEnvironment Research and Technology Development Fund (ERTDF), Ministry of Environment Japanen_GB
dc.description.sponsorshipRussian Presidenten_GB
dc.description.sponsorshipRussian Foundation for Basic Researchen_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipUS Department of Energy under the Regional and Global Climate Modeling (RGCM) Program and the Next-Generation Ecosystem Experiments (NGEE Arctic) projecten_GB
dc.identifier.citationVol. 12, pp. 3321 - 3349en_GB
dc.identifier.doi10.5194/bg-12-3321-2015
dc.identifier.grantnumberES0804en_GB
dc.identifier.grantnumberNNX11AR16Gen_GB
dc.identifier.grantnumber1216037en_GB
dc.identifier.grantnumber03G0836Cen_GB
dc.identifier.grantnumber243908en_GB
dc.identifier.grantnumber282672en_GB
dc.identifier.grantnumberEaSM: AGS-1243220en_GB
dc.identifier.grantnumberDE-SC0007007en_GB
dc.identifier.grantnumberA-1202en_GB
dc.identifier.grantnumberNSh- 3894.2014.5en_GB
dc.identifier.grantnumber15-05-02457en_GB
dc.identifier.grantnumberNE/I012915/1en_GB
dc.identifier.grantnumberDE-AC02-05CH11231en_GB
dc.identifier.urihttp://hdl.handle.net/10871/18995
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union (EGU) / Copernicus Publicationsen_GB
dc.rightsCopyright © Author(s) 2015. This work is distributedunder the Creative Commons Attribution 3.0 License.en_GB
dc.titleWETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberiaen_GB
dc.typeArticleen_GB
dc.date.available2015-12-15T14:24:21Z
dc.identifier.issn1726-4170
dc.descriptionThis article was published as a discussion paper in Biogeosciences Discussions Vol. 12, pp. 1907 - 1973 (2015). See http://hdl.handle.net/10871/17199 in ORE.en_GB
dc.descriptionOpen access journalen_GB
dc.identifier.eissn1726-4189
dc.identifier.journalBiogeosciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record