Show simple item record

dc.contributor.authorRödenbeck, C
dc.contributor.authorBakker, DCE
dc.contributor.authorGruber, N
dc.contributor.authorIida, Y
dc.contributor.authorJacobson, AR
dc.contributor.authorJones, SD
dc.contributor.authorLandschützer, P
dc.contributor.authorMetzl, N
dc.contributor.authorNakaoka, S
dc.contributor.authorOlsen, A
dc.contributor.authorPark, G-H
dc.contributor.authorPeylin, P
dc.contributor.authorRodgers, KB
dc.contributor.authorSasse, TP
dc.contributor.authorSchuster, U
dc.contributor.authorShutler, Jamie D.
dc.contributor.authorValsala, V
dc.contributor.authorWanninkhof, R
dc.contributor.authorZeng, J
dc.date.accessioned2016-01-07T11:56:32Z
dc.date.issued2015-12-11
dc.description.abstractUsing measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea-air CO2 fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types - taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea-air CO2 flux of 0.31 PgC yr1 (standard deviation over 1992-2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO2 sink estimated by the SOCOM ensemble is -1.75 PgC yr1 (1992-2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.en_GB
dc.description.sponsorshipEU FP7 project CARBOCHANGEen_GB
dc.description.sponsorshipEU FP7 project GEOCARBONen_GB
dc.description.sponsorshipEuropean Space Agencyen_GB
dc.description.sponsorshipNASAen_GB
dc.description.sponsorshipNOAA Office of Climate Observations (OCO)en_GB
dc.description.sponsorshipEU FP7 project CARBONESen_GB
dc.description.sponsorshipNorwegian Research Councien_GB
dc.identifier.citationBiogeosciences, 2015, Vol. 12, issue 23, pp. 7251 - 7278en_GB
dc.identifier.doi10.5194/bg-12-7251-2015
dc.identifier.grantnumber264879en_GB
dc.identifier.grantnumber283080en_GB
dc.identifier.grantnumber4000112091/14/I-LGen_GB
dc.identifier.grantnumberNNX14AL85Gen_GB
dc.identifier.grantnumberNA17RJ2612en_GB
dc.identifier.grantnumberNA08OAR4320752en_GB
dc.identifier.grantnumberSNACS: 229752en_GB
dc.identifier.urihttp://hdl.handle.net/10871/19154
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union/ Copernicus Publicationsen_GB
dc.relation.urlhttp://www.biogeosciences.net/12/7251/2015/bg-12-7251-2015.htmlen_GB
dc.rights© Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.en_GB
dc.titleData-based estimates of the ocean carbon sink variability - First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)en_GB
dc.typeArticleen_GB
dc.date.available2016-01-07T11:56:32Z
dc.identifier.issn1726-4170
dc.descriptionThis is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.en_GB
dc.identifier.journalBiogeosciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record