Show simple item record

dc.contributor.authorBrownjohn, James
dc.contributor.authorMiddleton, C.J.
dc.date.accessioned2016-01-29T16:14:22Z
dc.date.issued2008-06
dc.description.abstractManufacturing plants that produce micro-electronic components, and facilities for extreme-precision experimental measurements have strict vertical vibration serviceability requirements due to sub-micron feature size or optical/target dimensions. Failure to meet these criteria may result in extremely costly loss of production or failure of experiments. For such facilities floors are massive but stiff, usually constructed with concrete, generally have first mode natural frequencies above 10 Hz and are typically classed as ‘high-frequency floors’. The process of design to limit in-service vibrations to be within specific or generic vibration criteria is termed ‘vibration control’. Several guidance documents for vibration control of high-frequency floors have been published, for different applications. These design guides typically propose simplifications of complex floor systems and use of empirical predictive design formulae. A recently published guide uses a more rigorous approach based on first-principle modal analysis and modeling footfalls as effective impulses, but there remain unresolved issues about its application, and this paper addresses these in order to develop an improved methodology. First, the significant but conventionally discounted contribution of resonance well above the conventionally accepted boundary between low and high-frequency floors is examined. The level of necessary modeling detail is then considered along with the effect of accounting for adjacent bays in simulation of regular multi-bay floors. Finally, while it is assumed that contributions of higher modes to impulsive response decrease so that a cut-off frequency can be prescribed, simulations demonstrate that with both effective impulse and real footfall forces, there is not necessarily asymptotic response with rising floor mode frequency. The conclusion is that there are no shortcuts to predicting response of high-frequency floors to footfall excitation. Simulations must consider resonant response due to high-order harmonics, provide adequate detail in finite element models and adopt a cut-off frequency that depends more on usage than on features of the floor or of the walking.en_GB
dc.identifier.citationVol. 30 (6), pp. 1548 - 1559en_GB
dc.identifier.doi10.1016/j.engstruct.2007.10.006
dc.identifier.urihttp://hdl.handle.net/10871/19432
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rightsAccepted manuscript: © 2008, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.subjectFloor vibrationen_GB
dc.subjectServiceabilityen_GB
dc.subjectAssessmenten_GB
dc.subjectPedestrianen_GB
dc.titleProcedures for vibration serviceability assessment of high-frequency floorsen_GB
dc.typeArticleen_GB
dc.date.available2016-01-29T16:14:22Z
dc.identifier.issn0141-0296
dc.identifier.journalEngineering Structuresen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record