Show simple item record

dc.contributor.authorZhang, X
dc.contributor.authorBrownjohn, James
dc.contributor.authorOmenzetter, P
dc.date.accessioned2016-02-01T10:35:50Z
dc.date.issued2003-05
dc.description.abstractTime domain formulation of the self-excited wind forces on bridge decks employs indicial functions. In bridge aeroelasticity, these functions are obtained by transforming the flutter derivative model to time domain. Studies have suggested, however, that the relative amplitude effect, i.e. the effect of structural oscillation amplitude relative to the amplitude of response to ambient wind, on flutter derivatives needs to be considered. This effect indicates the difference between the two cases, where the pulse response of an elastically supported body is smooth and where the motion is significantly affected by ambient wind forces. The non-linearity may affect the transformation of flutter derivative model to time domain. An alternative to obtaining the time domain formulation for the self-excited force is to treat the self-excited force as a separate dynamic system, so that the relative amplitude effect can be evaluated in more detail. In this paper, a self-excited force generation system coupled with the rigid bridge deck system is proposed to overcome the difficulties in the measurement and derivation of the time domain representation of self-excited force on bridge decks. This expression can be linked to a flutter derivative model, and a transform relationship between the two models is suggested.en_GB
dc.identifier.citationJournal of Wind Engineering and Industrial Aerodynamics, 2003, Vol. 91, Issue 6, pp. 723 - 736en_GB
dc.identifier.doi10.1016/S0167-6105(02)00476-2
dc.identifier.urihttp://hdl.handle.net/10871/19451
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0167610502004762en_GB
dc.rights© 2003. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.titleTime domain formulation of self-excited forces on bridge deck for wind tunnel experimenten_GB
dc.typeArticleen_GB
dc.date.available2016-02-01T10:35:50Z
dc.identifier.issn0167-6105
dc.identifier.journalJournal of Wind Engineering and Industrial Aerodynamicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record